20 research outputs found

    Month ahead rainfall forecasting using gene expression programming

    Get PDF
    In the present study, gene expression programming (GEP) technique was used to develop one-month ahead monthly rainfall forecasting models in two meteorological stations located at a semi-arid region, Iran. GEP was trained and tested using total monthly rainfall (TMR) time series measured at the stations. Time lagged series of TMR samples having weak stationary state were used as inputs for the modeling. Performance of the best evolved models were compared with those of classic genetic programming (GP) and autoregressive state-space (ASS) approaches using coefficient of efficiency (R2) and root mean squared error measures. The results showed good performance (0.53<R2<0.56) for GEP models at testing period. In both stations, the best model evolved by GEP outperforms the GP and are significantly superior to the ASS models.No sponso

    Suspended sediment modelling by SVM and wavelet

    Get PDF
    Napredak koji danas bilježimo u primjeni umjetne inteligencije za predviđanje hidroloških događaja doveo je do brojnih promjena u sferi predviđanja. Valićni model baziran na metodi potpornih vektora (WSVM) dobiven je spajanjem valićne analize i metode potpornih vektora (SVM). Za učenje i testiranje korišteni su podaci o lebdećem nanosu (SS) i dnevnom protoku (Q) izmjereni na rijeci Iowa u SAD-u. Provedene analize su pokazale da se valićni model WSVM može koristiti za aproksimaciju količine lebdećeg nanosa.Present-day advances in artificial intelligence, as a forecaster for hydrological events, have led to numerous changes in forecasting. The wavelet support vector machine (WSWM) model is achieved by conjunction of the wavelet analysis and the support vector machine (SVM). The suspended sediment (SS) and daily stream flow (Q) data from the Iowa River in the USA were used for training and testing. The WSVM could logically be used for approximation of the suspended sediment load

    Using Wavelet to Analyze Periodicities in Hydrologic Variables

    Full text link
    The trend and shift in the seasonal temperature, precipitation and streamflow time series across the Midwest have been analyzed, for the period 1960-2013, using the statistical analyses (Mann- Kendall test with and without considering short term persistence (MK2 and MK1, respectively) and Pettitt test). The paper also utilizes a relatively new approach, wavelet analysis, for testing the existence of trend and shift in the time series. The method has the ability to decompose a time series in to lower (trend) and higher frequency components (noise). Discrete wavelet transform (DWT) has been employed in the present study with an aim to find which periodicities are mainly responsible for trend in the original data. The combination of MK1, MK2, and DWT along with Pettitt test hasn’t been extensively used up to this time, especially in detecting trend and shift in the Midwest. The analysis of climate division temperature and precipitation data and USGS naturalized streamflow data revealed the presence of periodicity in the time series data. All the incorporated time series data were seasonal to analyze the trends and shifts for four seasons-winter, spring, summer and fall independently. D3 component of DWT were observed to be influential in detecting real trend in temperature, precipitation and streamflow data, however unlike temperature, precipitation and streamflow showed decreasing trend as well. Shift was relatively observed more than trend in the region with dominance of D3 component in the data. The result indicate the significant warming trend which agrees with the “increasing temperature” observations in the past two decades, however a clear explanation for precipitation and streamflow is not obvious

    Groundwater Level Forecasting Using Wavelet and Kriging

    Get PDF
    In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial neural network (ANN) and a WANN were trained for each piezometer. Kriging was used in spatial estimations. The comparison of the prediction accuracy of these two models illustrated that the WANN was more efficacious in prediction of GWL for one month ahead. Thereafter, in order to predict GWL in desired points in the study area, the kriging method was used and a Gaussian model was selected as the best variogram model. Ultimately, the WANN with coefficient of determination and root mean square error and mean absolute error, 0.836 and 0.335 and 0.273 respectively, in temporal forecasting and Gaussian model with root mean square, 0.253 as the best fitted model on Kriging method for spatial estimating were suitable choices for spatiotemporal GWL forecasting. The obtained map of groundwater level showed that the groundwater level was higher in the areas of plain located in mountainside areas. This fact can show that outcomes are respectively correct

    A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting

    Get PDF
    Streamflow forecasting has an important role in water resource management and reservoir operation. Support vector machine (SVM) is an appropriate and suitable method for streamflow prediction due to its best versatility, robustness, and effectiveness. In this study, a wavelet transform particle swarm optimization support vector machine (WT-PSO-SVM) model is proposed and applied for streamflow time series prediction. Firstly, the streamflow time series were decomposed into various details (Ds) and an approximation (A3) at three resolution levels (21-22-23) using Daubechies (db3) discrete wavelet. Correlation coefficients between each D subtime series and original monthly streamflow time series are calculated. Ds components with high correlation coefficients (D3) are added to the approximation (A3) as the input values of the SVM model. Secondly, the PSO is employed to select the optimal parameters, C, ε, and σ, of the SVM model. Finally, the WT-PSO-SVM models are trained and tested by the monthly streamflow time series of Tangnaihai Station located in Yellow River upper stream from January 1956 to December 2008. The test results indicate that the WT-PSO-SVM approach provide a superior alternative to the single SVM model for forecasting monthly streamflow in situations without formulating models for internal structure of the watershed

    Combined forecast model involving wavelet-group methods of data handling for drought forecasting

    Get PDF
    Vigorous efforts to improve the effectiveness of drought forecasting models has yet to yield accurate result. The situation gives room on the use of robust forecasting methods that could effectively improve existing methods. The complex nature of time series data does not enable one single method that is suitable in all situations. Thus, a combined model that will provide a better result is then proposed. This study introduces a wavelet and group methods of data handling (GMDH) by integrating discrete wavelet transform (DWT) and GMDH with transfer functions such as sigmoid and radial basis function (RBF) to form three wavelet-GMDH models known as modified W-GMDH (MW-GMDH), sigmoid W-GMDH (SW-GMDH) and RBF W-GMDH. To assess the effectiveness of this approach, these models were applied to rainfall data at four study stations namely Arau and Kuala Krai in Malaysia as well as Badeggi and Duku-Lade in Nigeria. These data were transformed into four Standardized Precipitation Index (SPI) known as SPI3, SPI6, SPI9 and SPI12. The result shows that the integration of DWT improved the performance of the conventional GMDH model. The combination of these models further improved the performance of each model. The proposed model provides efficient, simple, and reliable accuracy when compared with other models. The incorporation of wavelet to the study results in improving performance for all four stations with the Combined W-GMDH (CW-GMDH) and Combined Regression W-GMDH (CRW-GMDH) models. The results show that Duku-Lade station produced the lowest value of 0.0239 and 0.0211 for RMSE and MAE and highest value of 0.9858 for R respectively. In addition, CRW-GMDH model produce the lowest value of 0.0168 and 0.0117, and the highest value of 0.9870 for RMSE MAE, and R respectively. On the percentage improvement, Duku-Lade station shows improvement over other models with the reductions in RMSE and MAE by 42.3% and 80.3% respectively. This indicates that the model is most suitable for the drought forecasting in this station. The results of the comparison among the four stations indicate that the CW-GMDH and CRW-GMDH models are more accurate and perform better than MW-GMDH, SW-GMDH and RBFW-GMDH models. However, the overall performance of the CRW-GMDH model outweigh that of the CW-GMDH model. In conclusion, CRW-GMDH model performs better than other models for drought forecasting and capable of providing a promising alternative to drought forecasting technique

    Assessment of Trend in Groundwater Level using Hybrid Mann-Kendall and Wavelet Transform Method (Case Study: Ardabil Plain)

    Get PDF
    Study of changes in groundwater resources has great importance on planning and management of sustainable water resources in any region.  The goal of this study was trends and dominant period investigation in groundwater level data at monthly timescales in fifteen piezometers of Ardabil plain using non-parametric Mann–Kendall (MK), temporal pre-processing (discrete wavelet transform) and spatial pre-processing (self-organizing map) methods. In first step, a Self-Organizing-Map (SOM)-based clustering technique was used to identify spatially homogeneous clusters of groundwater level (GWL) data. At second step, the wavelet transform (WT) was also used to extract dynamic and multi-scale features of the non-stationary GWL for central piezometers at 3 level. At last step, The MK test were applied to different combinations of DWT after removing the effect of significant lag-1 serial correlation to calculate components responsible for trend of the time series.  The results showed that negative trend is prevalent in the case study; generally, wavelet-based detail at level 3 plus the approximations time series was conceded as the dominant periodic component
    corecore