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ABSTRACT 

Vigorous efforts to improve the effectiveness of drought forecasting models 

has yet to yield accurate result. The situation gives room on the use of robust 

forecasting methods that could effectively improve existing methods. The complex 

nature of time series data does not enable one single method that is suitable in all 

situations. Thus, a combined model that will provide a better result is then proposed. 

This study introduces a wavelet and group methods of data handling (GMDH) by 

integrating discrete wavelet transform (DWT) and GMDH with transfer functions such 

as sigmoid and radial basis function (RBF) to form three wavelet-GMDH models 

known as modified W-GMDH (MW-GMDH), sigmoid W-GMDH (SW-GMDH) and 

RBF W-GMDH. To assess the effectiveness of this approach, these models were 

applied to rainfall data at four study stations namely Arau and Kuala Krai in Malaysia 

as well as Badeggi and Duku-Lade in Nigeria. These data were transformed into four 

Standardized Precipitation Index (SPI) known as SPI3, SPI6, SPI9 and SPI12. The 

result shows that the integration of DWT improved the performance of the 

conventional GMDH model. The combination of these models further improved the 

performance of each model. The proposed model provides efficient, simple, and 

reliable accuracy when compared with other models. The incorporation of wavelet to 

the study results in improving performance for all four stations with the Combined W-

GMDH (CW-GMDH) and Combined Regression W-GMDH (CRW-GMDH) models. 

The results show that Duku-Lade station produced the lowest value of 0.0239 and 

0.0211 for RMSE and MAE and highest value of 0.9858 for R respectively. In 

addition, CRW-GMDH model produce the lowest value of 0.0168 and 0.0117, and the 

highest value of 0.9870 for RMSE MAE, and R respectively. On the percentage 

improvement, Duku-Lade station shows improvement over other models with the 

reductions in RMSE and MAE by 42.3% and 80.3% respectively. This indicates that 

the model is most suitable for the drought forecasting in this station. The results of the 

comparison among the four stations indicate that the CW-GMDH and CRW-GMDH 

models are more accurate and perform better than MW-GMDH, SW-GMDH and 

RBFW-GMDH models. However, the overall performance of the CRW-GMDH model 

outweigh that of the CW-GMDH model. In conclusion, CRW-GMDH model performs 

better than other models for drought forecasting and capable of providing a promising 

alternative to drought forecasting technique. 
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ABSTRAK 

Pelbagai usaha untuk meningkatkan keberkesanan model peramalan kemarau 

masih belum memberikan hasil yang tepat. Situasi ini memberi ruang kepada kaedah 

ramalan teguh yang dapat meningkatkan keberkesanan kaedah sedia ada. Sifat data siri 

masa yang kompleks tidak memungkinkan penggunaan satu kaedah tunggal sesuai dalam 

semua keadaan. Oleh itu, model gabungan yang akan memberikan hasil yang lebih baik 

telah dicadangkan. Kajian ini memperkenalkan wavelet dan kaedah kumpulan 

mengendalian data (GMDH) dengan mengintegrasi jelmaah gelombang kecil diskrit 

(DWT) dan GMDH dengan fungsi pemindahan seperti sigmoid dan fungsi radial basis 

(RBF), untuk membentuk tiga model gelombang kecil GMDH yang dikenali sebagai W-

GMDH terubah suai (MW-GMDH), sigmoid W-GMDH (SW-GMDH) dan RBF W-

GMDH. Untuk menilai keberkesanan pendekatan ini, model-model tersebut telah 

digunakan pada data hujan di empat stesen kajian iaitu Arau dan Kuala Krai di Malaysia, 

serta Badeggi dan Duku-Lade di Nigeria. Data tersebut telah diubah menjadi empat Indeks 

Pemendakan piawai (SPI) dikenali sebagai SPI3, SPI6, SPI9 dan SPI12. Hasil 

menunjukkan gabungan DWT telah meningkatkan prestasi model GMDH konvensional. 

Kombinasi model ini meningkatkan lagi prestasi setiap model. Model yang dicadang telah 

memberikan ketepatan yang cekap, sederhana dan boleh dipercayai apabila dibandingkan 

dengan model lain. Penggabungan gelombang kecil dalam kajian ini telah menghasilkan 

prestasi yang lebih baik untuk keempat-empat stesen dengan model W-GMDH tergabung 

(CW-GMDH) dan regresi tergabung W-GMDH (CRW-GMDH). Hasil kajian 

menunjukkan stesen Duku-Lade menghasilkan nilai terendah 0.0239 dan 0.0211 untuk 

RMSE dan MAE, serta nilai tertinggi 0.9858 untuk R. Tambahan lagi, model CRW-

GMDH menghasilkan nilai terendah 0.0168 dan 0.0117, serta nilai tertinggi 0.9870, 

masing-masing untuk RMSE, MAE dan R. Mengenai peningkatan peratusan, stesen 

Duku-Lade menunjukkan peningkatan berbanding model lain dengan pengurangan RMSE 

dan MAE masing-masing sebanyak 42.3% dan 80.3%. Ini menunjukkan model ini sangat 

sesuai untuk ramalan musim kemarau di stesen ini. Hasil perbandingan di antara empat 

stesen menunjukkan model CW-GMDH dan CRW-GMDH adalah lebih tepat dan 

mempunyai prestasi yang lebih baik daripada model MW-GMDH, SW-GMDH dan 

RBFW-GMDH. Walau bagaimanapun, prestasi keseluruhan model CRW-GMDH 

mengatasi prestasi model CW-GMDH. Kesimpulannya, model CRW-GMDH adalah 

berprestasi lebih baik daripada model peramalan kemarau yang lain dan mampu 

memberikan alternatif yang menjanjikan kepada teknik ramalan kemarau. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Time series forecasting can be defined as a process in which statements are 

made about the actual outcome of events which are not yet observed. It is a decision-

making tool or planning tool used to help the management or many businesses in its 

attempt to handle the uncertainties of the future, which relies mainly on the data 

obtained from the present and past. Shijin, (2012) described forecasting which feature 

as one of the vital research areas in the investigation of the hydrological time series. 

Similarly, Raicharoen and Lursinsap, (2005) stated that time series forecasting can be 

known as the act of forecasting the future when the past is understood. Time series 

forecasting generally applied in many research has become a significant method to 

drought forecasting (Han et al., 2012). 

Group method of data handling (GMDH) which remains the focus of this study 

stands as a kind of inductive systems for computer-based mathematical modeling of 

multi-parametric datasets that features entirely on automatic structural and parametric 

optimization of models. The GMDH method which is also known as the polynomial 

neural network was initially articulated to solve for complex order regression 

polynomials principally to solve the modeling and classification problem 

(Ostertagová, 2014). In modeling techniques, the algorithm of GMDH operates and 

structured as a computer-oriented and heuristic technique which is capable of learning 

the relationship between the variables. GMDH is a system of developing nonlinear 

structures which uses several input variables. The GMDH system was originally 

discovered and offered by an Ukrainian scientist, Ivakhnenko and his Colleagues in 

1968 which bring about mathematical models of complex systems to handle data 

samples with observations (Ivakhnenko, 1971). The intention was to develop a new 

way of obtaining another stochastic approximation. GMDH is described as a method 
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which can resist the issue of overfitting. It is widely used in route planning, large data 

analysis, traffic flow prediction and recently in time series forecasting. Many studies 

conducted with the application of GMDH have proved its importance in the area of 

time series forecasting. Some of the results use the combined algorithm the GMDH 

model to improve the forecasting accuracy of the models (Najafzadeh and Barani, 

2013). 

Drought forecasting is an essential tool used to implement appropriate 

moderation actions to reduce undesirable impacts on the socioeconomic events of man 

in a location. The presence of drought forecasting indices for a particular site or a 

particular area is capable of assisting in improving the decision-making course for 

drought mitigation because the appropriate actions can be chosen which can be based 

on the danger connected with the likely evaluation of existing drought conditions. 

Drought is a most damaging among all the natural hazards (Pulwarty and Sivakumar, 

2014) and it is the least understood of the natural disasters. The negative effect of 

drought becomes noticeable through its effect on a region (Wilhite et al., 2000). The 

actual end of the drought is difficult to predict (Payus et al., 2020) and what made up 

of drought differs from one region to another (Sherval and Mcguirk, 2014). With the 

drought forecasting, the likelihood of drought occurring can be predicted using 

scientific models by using precipitation indices like the standardized precipitation 

index (SPI) data series. The drought can create significant economic and social 

problems in the areas of its occurrence. Insufficient rain can lead to a loss in the crops, 

diseases in the land and even unemployment due to the declines on human production.  

If there is a reduction of water in rivers and lakes, this can lead to the problems 

on the side of users such as man and animals. The problem of drought on the 

environment is also an issue on the inhabitants which includes plants other vegetations 

and human beings.  When drought takes place their means of survival on food supply 

will reduce which can equally lead to the damage of their habitat. Among the negative 

effects of drought are anxiety, economic losses, conflicts when there is an absence of 

enough water and loss of human life. Generally, the drought forecasting has not been 

given the desired attention it deserves in order give room for drought preparedness and 

the timely notice as mentioned earlier. As a result of this, the emphasis on crisis 



 

3 

management, various people have generally moved from one tragedy to another 

tragedy without any drop in risk which they are likely to encounter (Hayes et al, 1996). 

1.2 Background of the Study 

Generally, forecasting methods widely used in time series applications can be 

categorized into two. These are statistical methods and Artificial Intelligence (AI) 

methods. Statistical methods include simple moving average (SMA), exponential 

smoothening (ES) and auto-regressive integrated moving average (ARIMA) while AI 

techniques are Artificial neural networks (ANN), support vector machine (SVM), 

fuzzy logic, among others. Statistical methods have been used successfully and 

extensively in time series forecasting for many years in the past (Deb et. al, 2017). 

These methods are simple and easy to interpret, but not without its limitations. One of 

the major limitations of this method is its merely described as a linear. It is desirable 

to fit the data with the available data and the prior knowledge about the relations 

between the inputs and outputs before modeling process is determined. 

The linear modeling which uses the univariate time series modeling approach 

is based on extracting and by means of information which is implicitly contained in 

the past data without directly taken into consideration the external factors are 

becoming increasingly popular because of their rapid development in times together 

with little requirement of information (Adamowski, 2008; Pai et al., 2010; Chen et al., 

2013; Chau and Wu, 2010 and Nourani et al., 2011). Of recent the application of data-

driven models is proved to provide accurate prediction with little knowledge of the 

behavior and criteria of the geographical, hydrological, and physical process (Moosavi 

et al., 2013). 

Nonetheless, the use of only the past time series data having the same variable 

is analyzed to develop a model. The development of the underlining relationship can 

reduce the data dimensionality for a given problem being modeled which improves the 

generalization and forecasting performance. This modeling approach is useful when 

little knowledge is available on the data generating process or when satisfactory 
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explanatory model which is related to the prediction variable to obtain the explanatory 

variables are not available. The goal of forecasting time series data is to obtain 

information about the data to be able to predict future values. Over the years, many 

efforts have been devoted to the development and improvement of univariate time 

series forecasting models. One of the popular and extensively used forecasting model 

is the auto-regressive integrated moving average (ARIMA) model. The popularity of 

the ARIMA model is due to its statistical properties and the famous Box-Jenkins 

methodology in the model building process.  (Saleh, 2018) and (Al-Douri et al, 2018).  

In addition, ARIMA model provides a comprehensive statistical modeling 

methodology for the input and output processes. It covers a wide range of patterns, 

which ranges from stationary to nonstationary time series, and has been used widely 

in the past work (Shabri and Samsudin, 2014b)which has been adopted successfully in 

many fields such as sciences, engineering, methodology, hydrology and financial 

studies. ARIMA models originated from the auto-regressive models (AR), the moving 

average (MA) which gives the combination as ARMA models. However, integrated 

(I) is added and it becomes ARIMA models. ARIMA model has been highly successful 

in both areas of academic research and numerous areas of applications during the past 

four decades. It assumes that the future values of a time series have a linear relationship 

with the current and past values, hence, approximations by the model may not be 

adequate for complex nonlinear real-world problems. This is because real-world 

systems are often nonlinear (Guoqiang et al,. 1998), therefore, it may be unreasonable 

to assume a realization of a given time series is generated by a linear process. 

To address the drawbacks of this linear models, Artificial neural networks 

(ANN) model is one of the nonlinear models which is often considered in many 

researches. ANN models have received a global attention in the fields of science and 

engineering. It represents a class of nonlinear models which is capable of learning from 

the data itself. It has been used in many areas where statistical methods such as 

ARIMA are traditionally employed. They have been applied in areas such as pattern 

recognition, classification, forecast and process control. ANN is being applied in the 

areas of forecast and classification, where regression and other related statistical 

methods have been conventionally used(Gunn, 1998). Forecasting, in time series is a 
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common issue. Using statistical approach, Box and Jenkins,(Saleh, 2018)have 

developed ARIMA methodology for fitting a class of linear time series models. 

ANN models have received a global attention in the fields of science and 

engineering. It represents a class of nonlinear models which is capable of learning from 

the data itself. It has been used in many areas where statistical methods such as 

ARIMA are traditionally employed. They have been applied in areas such as pattern 

recognition, classification, forecast and process control. ANN is being applied in the 

areas of forecast and classification, where regression and other related statistical 

methods have been conventionally used (Cheng, 2015). Forecasting, in time series is 

a common issue. Using statistical approach of Box and Jenkins (1994), (Green, 2011) 

have developed ARIMA methodology for fitting a class of linear time series models. 

Among the studies that has been undertaken using artificial intelligent 

techniques to improve the accuracy of the time series forecasting problems like 

Artificial Neural Network (ANN) are contained in the works of(Wei et al., 2016); 

(Zhang, 2003) and(Chen and Zhu, 2007), GMDH (Kordnaeij et al., 2015); (Kondo et 

al., 2013) and(Onwubolu et al., 2008).  

One sub-model neural networks (NN) are a group method of data handling 

(GMDH) algorithm which were initially developed by (Ivakhnenko, 1971)for 

modeling and identification of complex systems. The GMDH model is known as a 

self-organizing heuristic (experimental) modeling technique. The goal of GMDH is to 

build an analytical function in a feed-forward network based on a quadratic node 

transfer function whose coefficients are obtained by using a regression method. The 

GMDH has the ability of self-selecting the number of layers and self-selecting useful 

input variables (Yen, 2016).The method offers the advantages of improved 

performance of forecasting (Adhikariet al., 2013) and (Misra et al., 2009). This model 

has been successfully used to deal with uncertainty, linear and nonlinear in different 

disciplines most especially in engineering, science, medical applications, signal 

processing and control systems (Vosset al., 1999); (Onwubolu et al., 2008); (Kondo et 

al., 2013) and(Ivakhnenko and Ivakhnenko, 2000). 
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Most application of GMDH model only implements a second order polynomial 

since it is a nonlinear model. Such polynomial is referred to as a partial decision (PD) 

of the GMDH algorithm (Teng et al., 2017a). The PD describes a nonlinear system 

where it is the transfer function for the GMDH model which consists of only two 

variables. In 2002, Zadeh et al., presented three different approaches of structural 

identification of GMDH model for modeling. In the study by Zadeh et al., (2002) 

indicated that GMDH model with the error driven approach is better than other existing 

methods. In error driven approach, the number of layers and the number of neurons in 

each layer is determined according to a threshold value before the GMDH process 

started and the best performing neuron is combined with previous input variable for 

the new layer. 

To alleviate the problems associated with the GMDH model, many modified 

methods have been undertaken such as work of (Kondo et al., 2013) modified GMDH 

model by the introduction of various types of neuron or transfer functions such as 

sigmoid, RBF function, the high order polynomial, and the linear function. Since these 

modifications can still be improved upon, the combined forecasting models were 

considered to further resolve these problems. In achieving this, various models were 

considered. Among these models, the ones that produces results in terms of measures 

of performances were combined and compared with the individual models in which 

the combined models are expected to improve the previous results. 

1.3 Challenges of Drought Forecasting  

There has been considerable research on modelling various aspects of drought 

such as identification and prediction or forecasting of its duration and severity. The 

term severity has various connotations in drought literature such as in hydrological 

drought, where it is defined as the cumulative shortage or the deficit sum with 

reference to a pre-specified truncation level. In meteorological drought, the severity 

has rather been defined in the form of indices such as the Palmer drought severity 

index. There exist a variety of techniques and methods to analyse the duration and 

severity of meteorological and hydrological droughts through probability 
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characterization of low flows, time series methods, synthetic data generation, theory 

of runs, multiple regression, group theory, pattern recognition and neural network 

methods. Agricultural droughts are analyzed based on soil moisture modelling 

concepts with crop yield considerations and using multiple linear regression 

techniques. The prediction or forecasting aspects of drought duration are developed 

better than the drought severity aspects. Drought means scarcity of water, which 

adversely affects various sectors of human society, e.g., agriculture, hydropower 

generation, water supply, industry (Panu and Sharma, 2002).  

A useful index for drought forecasting, based only on monthly precipitation, is 

the Standardized Precipitation Index (SPI); By applying an appropriate forecast 

method to the precipitation time series and then computing the SPI, it is possible to 

forecast future drought occurrences (Bordi et al., 2005 and Bordi et al., 2000). On the 

time scales of droughts, the most commonly used time scale in drought analysis is the 

year followed by the month (Bonacci, 2018). A major challenge of drought research is 

to develop suitable methods and techniques for forecasting the onset and termination 

points of droughts. An equally challenging task is the dissemination of drought 

research results for practical usage and wider applications. 

1.4 Challenges of GMDH Model in Time Series Forecasting 

The major goal of time series forecasting is to achieve the best accuracy to be 

able to make a good decision for any organization. There are limitations to the GMDH 

model, in cases where it tends to produce a complex polynomial network despite 

having a reasonably simple input data for the network (Onwubolu et al., 2008). Park 

et al., (2004) points out whether there sufficiently large number of input variables and 

data points, GMDH model tends to produce more complex neurons. The complexity 

of GMDH model increases at each training stage and a selection of a new layer, 

because of the addition of new input variables. Furthermore, the GMDH model just 

employ the same quadratic polynomial in each layer.(Park et al., 2004) also introduced 

a modified GMDH algorithm referred to as self-organizing polynomial neural network 

(SOPNN) model. The architectures of this model are like feed-forward NN whose 
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neurons are replaced by polynomial nodes. Many types of high-order polynomial 

called partial decisions (PDs) such as linear quadratic and modified quadratic of 

variables were used in SOPNN structure. Although the SPNN is structured by a 

systematic design procedure, it has some drawbacks to be solved. With the availability 

of small number of input variables, SOPNN does not give good performance (Park et 

al., 2004). 

Having discussed various challenges of drought forecasting and GMDH 

methods and their drawbacks particularly GMDH model, this research, therefore, 

focuses on efforts to improve the forecasting accuracy of GMDH model by proposing 

a Combine GMDH models with wavelet method and further combine GMDH model 

with regression and compare the results with the existing GMDH and Wavelet-GMDH 

models for drought forecasting. There are two types of wavelet methods, namely, 

discrete wavelet transform (DWT) and continues wavelet transform (CWT), the 

former is simple and easy to compute while the latter is difficult and complex (Heil 

and Walnut, 1989). This study will focus on the use of DWT. 

1.5 Problem Statement 

Various researchers have used different methods for drought forecasting such 

as Mokhtarzad, (2017) used ANN, ANFIS, and SVM. The researchers that used 

ARIMA for drought forecasting includes Karavitis et al., (2015); Bazrafshan et al., 

(2015); Mossad and Alazba, (2015); (Han et al., (2012) and Durdu (2010). Those that 

used hybrid methods such as ANFIS, ARIMA, and wavelet includes Shabri, (2014); 

Deo, et al., (2016); Belayneh, et al, (2013).So far and to the best knowledge of the 

researcher, there seems to be no research carried out aimed at using combine wavelet-

GMDH model in drought forecasting. However, various works have been done using 

GMDH in areas such as forecasting rice yields (Ruhaidah et al., 2010); flood 

forecasting (Badyalina and Shabri, 2015); crude palm oil price (Belayneh et al., 2014) 

and (Basheer and Khamis, 2017); Runoff forecasting (Moosavi et al., 2017); China’s 

energy consumption forecasting (Liang and Liang, 2017); streamflow forecasting 
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(Badyalina, 2014), river flow forecasting (Samsudin et al., 2011) time series 

forecasting (Zhang et al., 2012) and (Shabri and Samsudin, 2014b). 

The problems associated with these models that are visible in the literatures 

include the fact that they could not delve into a large volume of standardized 

precipitation index (SPI) data which can be overcome by the combined wavelet-

GMDH in addressing drought forecasting. Therefore, this current effort is expected to 

address the issues which are associated SPI which is usually used for drought 

forecasting. In this aspect previous forecasting models could not address this, hence, 

the focus on combined wavelet-GMDH model since no study has used the combined 

wavelet-GMDH model for drought forecasting using SPI. Consequently, the combined 

wavelet-GMDH forecasting model is expected to address these issues and produce a 

better result which will improve the forecasting performance when compared with the 

individual models. Combining forecast models from two or more forecasting models 

is capable of serving as an alternative to using an individual model (Winkler, 1983). 

 The strength of combine forecasting model involves its capability to address 

the pitfalls of individual models since it considered multiple models for its result while 

as the individual model only considers single model. Robert and Clemen (1989) said 

whatever method are used, combined forecasting models produce more accurate result 

compared with individual model. therefore, forecasts accuracy can be improved 

substantially through the combination of two or more single forecasting models. 

among the strength of the combined models include its reliability since it involves 

more forecasting models. if the best model results are selected for combination, it 

produces are more accurate result and the involvement of multiple models make it a 

good representation. A combined forecasting model is capable of minimizing the 

shortcomings of each individual models and allow them to complement each other.  

GMDH has shown an improvement when combined with other models. Zadeh 

et al (2002) combined GMDH model with individual value decomposition and it 

indicates significant improvement over GMDH model alone. Ruhaidah et al., (2009) 

proposed combined model with LSSVM and obtained a significantly improved result 

in the forecast. Of recent wavelet transform has gained popularity since it can produce 
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an encouraging result in the time series. Although GMDH is useful as a statistical tool 

in many fields but not often in hydrology particularly in drought forecasting. Discrete 

Wavelet Transform (DWT) has been widely used to improve the forecasting 

performance for time series models (Wang and Ding, 2003; Kisi and Jala 2010; Kisi 

and Cimen, 2011 and Salahaldeen et al., 2019).The DWT has several levels of 

decomposition. There are still lack of methods to determine which decomposition level 

is suitable for a specific data. GMDH similarly show a significant improvement when 

combine with genetic algorithm and fuzzy logic (Park et al., 2004 and Ahmadi et al., 

2015). 

Improving the forecasting accuracy is fundamental and yet it is one of the more 

difficult tasks faced by the decision-makers in many areas. However, using combine 

models have become a common practice to improve the forecasting accuracy. Many 

studies have shown that the combine models can be an effective means to the 

improvement of the forecasting accuracy when compared with the individual 

models(Qin et al., 2017 and Wei et al., 2016). The combined method of modeling has 

improved the performance of traditional models. (Shiri and Kisi, 2010) has proposed 

the combination of the wavelet transform and linear regression since it is easier to 

interpret for monthly stream flow forecasting. 

 The combined model is expected to improve the individual models which is 

as a result of involvement of more than one model. Panopoulou and Vrontos (2015) in 

applying combined model is of the opinion that it outperformed the individual 

forecasting model.  The combined forecasting models can reduce errors arising from 

faulty assumption, bias or mistakes made in the data (Armstrong, 2001). One of the 

drawbacks of the individual forecasting model is its limitation to only one single model 

as opposed to the consideration of more models in the combined model. 

Accurate and reliable forecasts are extremely important in diversity of 

applications in any organization in the area of planning and management. The best 

way to achieve this goal is in the area of selecting the forecasting methods that suites 

the situation. Having studied the various methods adopted by the different researchers, 

one of which is the use of the conventional GMDH, the present effort is aimed 
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proposing a more accurate and reliable combine wavelet-GMDH model as a tool for 

the drought forecasting. This is expected to improve the forecasting potential of the 

existing models. 

Consequently, this study attempts to investigate the accuracy of combining 

discrete wavelet transform (DWT) and GMDH model and Combine Regression with 

wavelet-GMDH using the SPI data set. The combination of wavelet and GMDH is to 

enhance the forecasting accuracy of wavelet-GMDH model. This approach is expected 

to improve the forecasting ability of the existing GMDH and Wavelet-GMDH models 

and to reduce the errors. 

1.6 Research Questions 

This study is driven by three research questions as stated below: 

(a) How can the Wavelet-GMDH model enhance drought forecasting? 

(b) Can the Combined wavelet-GMDH model contribute to the improvement of 

drought forecasting? 

(c) What is the strength and role of the combined wavelet-GMDH model in 

relation to the individual models?  

The study, therefore, propose a Combined Wavelet-GMDH forecasting 

modeling procedure with the SPI data series in forecasting drought. The outcome is 

expected to improve the power of drought forecasting with better performance 

accuracy. 
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1.7 Research Objectives 

This study is aimed at proposing a Combine Wavelet-GMDH for drought 

forecasting with traditional ARIMA and conventional GMDH models as benchmark. 

Specifically, the objectives of the study are: 

(a) To develop various Wavelet-GMDH models for drought forecasting 

(b) To propose the combination of the Wavelet-GMDH models developed which 

combines decomposition, data pre-processing and forecasting techniques and 

its application for drought forecasting with SPI datasets.  

(c) To compare the performance of various individual forecasting models with the 

proposed Combined Wavelet-GMDH forecasting models as a potential 

application for drought forecasting. 

 

1.8 The Scope of the Study 

In this study, the data used were obtained from four distinct irrigation stations 

in Malaysian and in Nigeria. The stations in Malaysia are Arau and Kuala Krai from 

Kelantan and Perlis states respectively. From Arau station, 624 datasets for a period of 

January 1956 and December 2008 were collected. From Kuala Krai station, 384 

datasets for a period of January 1975 and December 2008 were collected. Stations in 

Nigeria are Badeggi and Duku-Lade from Niger and Kwara states respectively. From 

Badeggi station, 600 observations for a period of January 1968 and December 2018 

were collected and from Duku-Lade station, 580 observations were obtained for a 

period of January 1992 and December 2016, were collected. The study used these data 

which are mainly from the rainfall in mm and converted to standardized precipitation 

index SPI) data series used to build the models and used as a tool for the drought 

forecasting at the four stations. 
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In this thesis, the wavelet GMDH model is based on the traditional GMDH 

model which is combined with the wavelet. The comparison models are ARIMA, W-

ARIMA, GMDH, W-GMDH, Modify GMDH, Modify W-GMDH, Sigmoid GMDH, 

Sigmoid W-GMDH, RBF GMDH and RBF W-GMDH. Lastly, the combination of the 

best three models (MW-GMDH, Sigmoid W-GMDH and RBF W-GMDH) was done 

to produce the combined model. Further to that a regression was carried out to obtain 

the overall best model. 

1.9 Significance of the Study 

Although several studies have been conducted on drought forecasting, but so far to the 

best knowledge of the researcher, very few has worked using the combine wavelet-

GMDH and Combine Regression Wavelet-GMDH model for drought forecasting 

using SPI data. Therefore, the present effort attempts to develop various wavelet-

GMDH models with their transfer functions obtained as a tool for drought forecasting. 

To achieve this, the various SPI data series will be used in building the combined 

wavelet-GMDH forecasting models. In the final analysis, three best models were 

combined to obtain the Combined forecasting model using SPI data sets. The results 

obtained are expected to demonstrate a higher accuracy and improvement when 

compared with the individual models. The combined wavelet-GMDH forecasting 

model is more effective in drought forecasting because of the involvement of multiple 

individual models which makes it a good representation to obtain the proposed 

combined model. 

1.10 Organization of Thesis 

The thesis is made up of six chapters which were discussed accordingly, 

followed by references and then appendices. 

Chapter 1 defines the background, challenges, problems, research questions, 

research objectives, the scope, the significance and lastly, thesis organization. 
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Chapter 2 reviews the main subjects of the study, these include the forecasting 

models, time series forecasting, SPI data and drought forecasting. 

Chapter 3 discusses the research methodology used in the study. These include 

the design of the computational techniques that support the objectives of the study. 

Other areas such as performance evaluation measures, source of data and 

instrumentation are discussed. 

Chapter 4 gave the description of the study areas and the collected data both in 

Malaysia and Nigeria. 

Chapter 5 contains the analysis and comparison of the model results for the 

four study stations involving SPI datasets. The results are compared based on models 

and the stations.  

Chapter6 presents the summary, conclusion, contribution, and 

recommendation which includes the suggestions for future work with regards to the 

continuation of the research in the area of this Group Method of Data Handling 

(GMDH) methodology. And finally, the references and appendix of the thesis. 
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