38,152 research outputs found

    Combined Neural Network and Rule-Based Framework for Probabilistic Pattern Recognition and Discovery

    Get PDF
    A combined neural network and rule-based approach is suggested as a general framework for pattern recognition. This approach enables unsupervised and supervised learning, respectively, while providing probability estimates for the output classes. The probability maps are utilized for higher level analysis such as a feedback for smoothing over the output label maps and the identification of unknown patterns (pattern "discovery"). The suggested approach is presented and demonstrated in the texture - analysis task. A correct classification rate in the 90 percentile is achieved for both unstructured and structured natural texture mosaics. The advantages of the probabilistic approach to pattern analysis are demonstrated

    A Genetic Bayesian Approach for Texture-Aided Urban Land-Use/Land-Cover Classification

    Get PDF
    Urban land-use/land-cover classification is entering a new era with the increased availability of high-resolution satellite imagery and new methods such as texture analysis and artificial intelligence classifiers. Recent research demonstrated exciting improvements of using fractal dimension, lacunarity, and Moranā€™s I in classification but the integration of these spatial metrics has seldom been investigated. Also, previous research focuses more on developing new classifiers than improving the robust, simple, and fast maximum likelihood classifier. The goal of this dissertation research is to develop a new approach that utilizes a texture vector (fractal dimension, lacunarity, and Moranā€™s I), combined with a new genetic Bayesian classifier, to improve urban land-use/land-cover classification accuracy. Examples of different land-use/land-covers using post-Katrina IKONOS imagery of New Orleans were demonstrated. Because previous geometric-step and arithmetic-step implementations of the triangular prism algorithm can result in significant unutilized pixels when measuring local fractal dimension, the divisor-step method was developed and found to yield more accurate estimation. In addition, a new lacunarity estimator based on the triangular prism method and the gliding-box algorithm was developed and found better than existing gray-scale estimators for classifying land-use/land-cover from IKONOS imagery. The accuracy of fractal dimension-aided classification was less sensitive to window size than lacunarity and Moranā€™s I. In general, the optimal window size for the texture vector-aided approach is 27x27 to 37x37 pixels (i.e., 108x108 to 148x148 meters). As expected, a texture vector-aided approach yielded 2-16% better accuracy than individual textural index-aided approach. Compared to the per-pixel maximum likelihood classification, the proposed genetic Bayesian classifier yielded 12% accuracy improvement by optimizing prior probabilities with the genetic algorithm; whereas the integrated approach with a texture vector and the genetic Bayesian classifier significantly improved classification accuracy by 17-21%. Compared to the neural network classifier and genetic algorithm-support vector machines, the genetic Bayesian classifier was slightly less accurate but more computationally efficient and required less human supervision. This research not only develops a new approach of integrating texture analysis with artificial intelligence for classification, but also reveals a promising avenue of using advanced texture analysis and classification methods to associate socioeconomic statuses with remote sensing image textures

    Texture analysis via unsupervised and supervised learning

    Get PDF
    A framework for texture analysis based on combined unsupervised and supervised learning is proposed. The textured input is represented in the frequency-orientation space via a Gabor-wavelet pyramidal decomposition. In the unsupervised learning phase a neural network vector quantization scheme is used for the quantization of the feature-vector attributes and a projection onto a reduced dimension clustered map for initial segmentation. A supervised stage follows, in which labeling of the textured map is achieved using a rule-based system. A set of informative features are extracted in the supervised stage as congruency rules between attributes using an information-theoretic measure. This learned set can now act as a classification set for test images. This approach is suggested as a general framework for pattern classification. Simulation results for the texture classification are given

    Convolutional Neural Network on Three Orthogonal Planes for Dynamic Texture Classification

    Get PDF
    Dynamic Textures (DTs) are sequences of images of moving scenes that exhibit certain stationarity properties in time such as smoke, vegetation and fire. The analysis of DT is important for recognition, segmentation, synthesis or retrieval for a range of applications including surveillance, medical imaging and remote sensing. Deep learning methods have shown impressive results and are now the new state of the art for a wide range of computer vision tasks including image and video recognition and segmentation. In particular, Convolutional Neural Networks (CNNs) have recently proven to be well suited for texture analysis with a design similar to a filter bank approach. In this paper, we develop a new approach to DT analysis based on a CNN method applied on three orthogonal planes x y , xt and y t . We train CNNs on spatial frames and temporal slices extracted from the DT sequences and combine their outputs to obtain a competitive DT classifier. Our results on a wide range of commonly used DT classification benchmark datasets prove the robustness of our approach. Significant improvement of the state of the art is shown on the larger datasets.Comment: 19 pages, 10 figure

    Morphological granulometry for classification of evolving and ordered texture images.

    Get PDF
    In this work we investigate the use of morphological granulometric moments as texture descriptors to predict time or class of texture images which evolve over time or follow an intrinsic ordering of textures. A cubic polynomial regression was used to model each of several granulometric moments as a function of time or class. These models are then combined and used to predict time or class. The methodology was developed on synthetic images of evolving textures and then successfully applied to classify a sequence of corrosion images to a point on an evolution time scale. Classification performance of the new regression approach is compared to that of linear discriminant analysis, neural networks and support vector machines. We also apply our method to images of black tea leaves, which are ordered according to granule size, and very high classification accuracy was attained compared to existing published results for these images. It was also found that granulometric moments provide much improved classification compared to grey level co-occurrence features for shape-based texture images
    • ā€¦
    corecore