5,891 research outputs found

    A collaborative trust management scheme for emergency communication using delay tolerant networks

    Get PDF
    Delay Tolerant Network (DTN) comprises of nodes with small and limited resources including power and memory capacity. We propose the use of DTN as an alternate means of communication for the dissemination of emergency information in a post-disaster evacuation operation. We investigate the performance of DTN in providing emergency communication support services under packet dropping attacks. We consider internally motivated attacks where the nodes that are part of the emergency rescue team are compromised with malicious behaviours thereby dropping packets to disrupt the message dissemination during the evacuation operation. A way to mitigating malicious behaviour and improve network performance of DTN is to use incentives in exchanging information between nodes. Unlike existing schemes, we consider the Basic Watchdog Detection System which detects and acts against misbehaving nodes to reduce their overall impact on the network performance. We design a Collaborative Trust Management Scheme (CTMS) which is based on the Bayesian detection watchdog approach to detect selfish and malicious behaviour in DTN nodes. We have evaluated our proposed CTMS through extensive simulations and compared our results with the other existing schemes. Our evaluations show that the use of adequate collaborative strategies between well behaved nodes could improve the performance of Watchdog schemes taking into account the delivery ratio, routing cost and the message delay from the source node to the destination node

    A collaborative trust management scheme for emergency communication using delay tolerant networks

    Get PDF
    Delay Tolerant Network (DTN) comprises of nodes with small and limited resources including power and memory capacity. We propose the use of DTN as an alternate means of communication for the dissemination of emergency information in a post-disaster evacuation operation. We investigate the performance of DTN in providing emergency communication support services under packet dropping attacks. We consider internally motivated attacks where the nodes that are part of the emergency rescue team are compromised with malicious behaviours thereby dropping packets to disrupt the message dissemination during the evacuation operation. A way to mitigating malicious behaviour and improve network performance of DTN is to use incentives in exchanging information between nodes. Unlike existing schemes, we consider the Basic Watchdog Detection System which detects and acts against misbehaving nodes to reduce their overall impact on the network performance. We design a Collaborative Trust Management Scheme (CTMS) which is based on the Bayesian detection watchdog approach to detect selfish and malicious behaviour in DTN nodes. We have evaluated our proposed CTMS through extensive simulations and compared our results with the other existing schemes. Our evaluations show that the use of adequate collaborative strategies between well behaved nodes could improve the performance of Watchdog schemes taking into account the delivery ratio, routing cost and the message delay from the source node to the destination node

    Secure Group Communication in Delay Tolerant Mobile Ad-Hoc Network

    Get PDF
    Delay-tolerant networks (DTNs) are well-known for delivering various types of information from different senders in a multicast manner, both in centralised and decentralised networks. Wireless mobile nodes form small networks in which one or more senders transmit data to one or more destinations through intermediate nodes. DTN routing protocols differ from traditional wireless routing protocols. There are security threats in DTNs, such as blackhole attackers dropping data, jamming attacks consuming bandwidth, and Vampire attacks depleting battery power and available bandwidth. This paper proposes a prevention scheme to detect and mitigate all three types of attackers in multicast communication. These attackers can impact performance by generating false replies, flooding with redundant information, and wasting communication power. The primary focus of this paper is on security issues related to DTN routing protocols. In order to counter malicious nodes, a blacklist is maintained, and if a neighbour identifies a node as malicious, it excludes packets from that node. Meanwhile, the neighbour continues sending packets to the malicious node, except for broadcast packets, which are dropped. If a node is found to forward no packets or only some packets by all its neighbours, any reply it gives to route requests is disregarded, and any request it initiates is ignored. Successful data reception at the destination indicates that hop-based data delivery maintains a record of successful transmissions. The proposed security scheme demonstrates improved performance

    A Taxonomy on Misbehaving Nodes in Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) are type of Intermittently Connected Networks (ICNs) featured by long delay, intermittent connectivity, asymmetric data rates and high error rates. DTNs have been primarily developed for InterPlanetary Networks (IPNs), however, have shown promising potential in challenged networks i.e. DakNet, ZebraNet, KioskNet and WiderNet. Due to unique nature of intermittent connectivity and long delay, DTNs face challenges in routing, key management, privacy, fragmentation and misbehaving nodes. Here, misbehaving nodes i.e. malicious and selfish nodes launch various attacks including flood, packet drop and fake packets attack, inevitably overuse scarce resources (e.g., buffer and bandwidth) in DTNs. The focus of this survey is on a review of misbehaving node attacks, and detection algorithms. We firstly classify various of attacks depending on the type of misbehaving nodes. Then, detection algorithms for these misbehaving nodes are categorized depending on preventive and detective based features. The panoramic view on misbehaving nodes and detection algorithms are further analyzed, evaluated mathematically through a number of performance metrics. Future directions guiding this topic are also presented

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Towards better understanding the challenges of reliable and trust-aware critical communications in the aftermath of disaster

    Get PDF
    This paper seeks to better understand the highly multi-dimensional, multi-faceted challenges of meeting trust and reliability requirements in critical, disaster aftermath communication networks comprising heterogeneous groups of nodes. Through emulation of a UK based flooding event in the South of England we show the impact of selfish and malicious nodes on disaster communications when disparate, distributed, and disconnected nodes are carrying sensitive messages relating to resource availability and need. To further support the need for trust-aware schemes in such environments we compare benchmark DTN protocols against our reliable, trust-aware framework, TACID, which penalises and excludes malicious nodes. We show that in disaster aftermath networks trust-aware schemes can significantly reduce the impact of malicious intermediary nodes and increase overall reliability whilst simultaneously maintaining message confidentiality

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    ReFIoV: a novel reputation framework for information-centric vehicular applications

    Get PDF
    In this article, a novel reputation framework for information-centric vehicular applications leveraging on machine learning and the artificial immune system (AIS), also known as ReFIoV, is proposed. Specifically, Bayesian learning and classification allow each node to learn as newly observed data of the behavior of other nodes become available and hence classify these nodes, meanwhile, the K-Means clustering algorithm allows to integrate recommendations from other nodes even if they behave in an unpredictable manner. AIS is used to enhance misbehavior detection. The proposed ReFIoV can be implemented in a distributed manner as each node decides with whom to interact. It provides incentives for nodes to cache and forward others’ mobile data as well as achieves robustness against false accusations and praise. The performance evaluation shows that ReFIoV outperforms state-of-the-art reputation systems for the metrics considered. That is, it presents a very low number of misbehaving nodes incorrectly classified in comparison to another reputation scheme. The proposed AIS mechanism presents a low overhead. The incorporation of recommendations enabled the framework to reduce even further detection time
    • …
    corecore