1,675 research outputs found

    Joint Geo-Spatial Preference and Pairwise Ranking for Point-of-Interest Recommendation

    Get PDF
    Recommending users with preferred point-of-interests (POIs) has become an important task for location-based social networks, which facilitates users' urban exploration by helping them filter out unattractive locations. Although the influence of geographical neighborhood has been studied in the rating prediction task (i.e. regression), few work have exploited it to develop a ranking-oriented objective function to improve top-N item recommendations. To solve this task, we conduct a manual inspection on real-world datasets, and find that each individual's traits are likely to cluster around multiple centers. Hence, we propose a co-pairwise ranking model based on the assumption that users prefer to assign higher ranks to the POIs near previously rated ones. The proposed method can learn preference ordering from non-observed rating pairs, and thus can alleviate the sparsity problem of matrix factorization. Evaluation on two publicly available datasets shows that our method performs significantly better than state-of-the-art techniques for the top-N item recommendation task

    Neural Collaborative Ranking

    Full text link
    Recommender systems are aimed at generating a personalized ranked list of items that an end user might be interested in. With the unprecedented success of deep learning in computer vision and speech recognition, recently it has been a hot topic to bridge the gap between recommender systems and deep neural network. And deep learning methods have been shown to achieve state-of-the-art on many recommendation tasks. For example, a recent model, NeuMF, first projects users and items into some shared low-dimensional latent feature space, and then employs neural nets to model the interaction between the user and item latent features to obtain state-of-the-art performance on the recommendation tasks. NeuMF assumes that the non-interacted items are inherent negative and uses negative sampling to relax this assumption. In this paper, we examine an alternative approach which does not assume that the non-interacted items are necessarily negative, just that they are less preferred than interacted items. Specifically, we develop a new classification strategy based on the widely used pairwise ranking assumption. We combine our classification strategy with the recently proposed neural collaborative filtering framework, and propose a general collaborative ranking framework called Neural Network based Collaborative Ranking (NCR). We resort to a neural network architecture to model a user's pairwise preference between items, with the belief that neural network will effectively capture the latent structure of latent factors. The experimental results on two real-world datasets show the superior performance of our models in comparison with several state-of-the-art approaches.Comment: Proceedings of the 2018 ACM on Conference on Information and Knowledge Managemen

    IMPROVING COLLABORATIVE FILTERING RECOMMENDER BY USING MULTI-CRITERIA RATING AND IMPLICIT SOCIAL NETWORKS TO RECOMMEND RESEARCH PAPERS

    Get PDF
    Research paper recommender systems (RSs) aim to alleviate the information overload of researchers by suggesting relevant and useful papers. The collaborative filtering in the area of recommending research papers can benefit by using richer user feedback data through multi-criteria rating, and by integrating richer social network data into the recommender algorithm. Existing approaches using collaborative filtering or hybrid approaches typically allow only one rating criterion (overall liking) for users to evaluate papers. We conducted a qualitative study using focus group to explore the most important criteria for rating research papers that can be used to control the paper recommendation by enabling users to set the weight for each criterion. We investigated also the effect of using different rating criteria on the user interface design and how the user can control the weight of the criteria. We followed that by a quantitative study using a questionnaire to validate our findings from the focus group and to find if the chosen criteria are domain independent. Combining social network information with collaborative filtering recommendation algorithms has successfully reduced some of the drawbacks of collaborative filtering and increased the accuracy of recommendations. All existing recommendation approaches that combine social network information with collaborative filtering in this domain have used explicit social relations that are initiated by users (e.g. “friendship”, “following”). The results have shown that the recommendations produced using explicit social relations cannot compete with traditional collaborative filtering and suffer from the low user coverage. We argue that the available data in social bookmarking Web sites can be exploited to connect similar users using implicit social connections based on their bookmarking behavior. We explore the implicit social relations between users in social bookmarking Web sites (such as CiteULike and Mendeley), and propose three different implicit social networks to recommend relevant papers to users: readership, co-readership and tag-based implicit social networks. First, for each network, we tested the interest similarities of users who are connected using the proposed implicit social networks and compare them with the interest similarities using two explicit social networks: co-authorship and friendship. We found that the readership implicit social network connects users with more similarities than users who are connected using co-authorship and friendship explicit social networks. Then, we compare the recommendation using three different recommendation approaches and implicit social network alone with the recommendation using implicit and explicit social network. We found that fusing recommendation from implicit and explicit social networks can increase the prediction accuracy, and user coverage. The trade-off between the prediction accuracy and diversity was also studied with different social distances between users. The results showed that the diversity of the recommended list increases with the increase of social distance. To summarize, the main contributions of this dissertation to the area of research paper recommendation are two-fold. It is the first to explore the use of multi-criteria rating for research papers. Secondly, it proposes and evaluates a novel approach to improve collaborative filtering in both prediction accuracy (performance) and user coverage and diversity (nonperformance measures) in social bookmarking systems for sharing research papers, by defining and exploiting several implicit social networks from usage data that is widely available

    Interacting Attention-gated Recurrent Networks for Recommendation

    Full text link
    Capturing the temporal dynamics of user preferences over items is important for recommendation. Existing methods mainly assume that all time steps in user-item interaction history are equally relevant to recommendation, which however does not apply in real-world scenarios where user-item interactions can often happen accidentally. More importantly, they learn user and item dynamics separately, thus failing to capture their joint effects on user-item interactions. To better model user and item dynamics, we present the Interacting Attention-gated Recurrent Network (IARN) which adopts the attention model to measure the relevance of each time step. In particular, we propose a novel attention scheme to learn the attention scores of user and item history in an interacting way, thus to account for the dependencies between user and item dynamics in shaping user-item interactions. By doing so, IARN can selectively memorize different time steps of a user's history when predicting her preferences over different items. Our model can therefore provide meaningful interpretations for recommendation results, which could be further enhanced by auxiliary features. Extensive validation on real-world datasets shows that IARN consistently outperforms state-of-the-art methods.Comment: Accepted by ACM International Conference on Information and Knowledge Management (CIKM), 201
    • …
    corecore