2,193 research outputs found

    Z2Z4-Additive Perdect Codes in Steganography

    Get PDF
    Steganography is an information hiding application which aims to hide secret data imperceptibly into a cover object. In this paper, we describe a novel coding method based on Z2Z4-additive codes in which data is embedded by distorting each cover symbol by one unit at most (+-1-steganography). This method is optimal and solves the problem encountered by the most e cient methods known today, concerning the treatment of boundary values. The performance of this new technique is compared with that of the mentioned methods and with the well-known rate-distortion upper bound to conclude that a higher payload can be obtained for a given distortion by using the proposed method

    A New Information Hiding Method Based on Improved BPCS Steganography

    Get PDF
    Bit-plane complexity segmentation (BPCS) steganography is advantageous in its capacity and imperceptibility. The important step of BPCS steganography is how to locate noisy regions in a cover image exactly. The regular method, black-and-white border complexity, is a simple and easy way, but it is not always useful, especially for periodical patterns. Run-length irregularity and border noisiness are introduced in this paper to work out this problem. Canonical Cray coding (CGC) is also used to replace pure binary coding (PBC), because CGC makes use of characteristic of human vision system. Conjugation operation is applied to convert simple blocks into complex ones. In order to contradict BPCS steganalysis, improved BPCS steganography algorithm adopted different bit-planes with different complexity. The higher the bit-plane is, the smaller the complexity is. It is proven that the improved BPCS steganography is superior to BPCS steganography by experiment

    Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions

    Full text link
    An analysis of steganographic systems subject to the following perfect undetectability condition is presented in this paper. Following embedding of the message into the covertext, the resulting stegotext is required to have exactly the same probability distribution as the covertext. Then no statistical test can reliably detect the presence of the hidden message. We refer to such steganographic schemes as perfectly secure. A few such schemes have been proposed in recent literature, but they have vanishing rate. We prove that communication performance can potentially be vastly improved; specifically, our basic setup assumes independently and identically distributed (i.i.d.) covertext, and we construct perfectly secure steganographic codes from public watermarking codes using binning methods and randomized permutations of the code. The permutation is a secret key shared between encoder and decoder. We derive (positive) capacity and random-coding exponents for perfectly-secure steganographic systems. The error exponents provide estimates of the code length required to achieve a target low error probability. We address the potential loss in communication performance due to the perfect-security requirement. This loss is the same as the loss obtained under a weaker order-1 steganographic requirement that would just require matching of first-order marginals of the covertext and stegotext distributions. Furthermore, no loss occurs if the covertext distribution is uniform and the distortion metric is cyclically symmetric; steganographic capacity is then achieved by randomized linear codes. Our framework may also be useful for developing computationally secure steganographic systems that have near-optimal communication performance.Comment: To appear in IEEE Trans. on Information Theory, June 2008; ignore Version 2 as the file was corrupte

    Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions

    Full text link
    An analysis of steganographic systems subject to the following perfect undetectability condition is presented in this paper. Following embedding of the message into the covertext, the resulting stegotext is required to have exactly the same probability distribution as the covertext. Then no statistical test can reliably detect the presence of the hidden message. We refer to such steganographic schemes as perfectly secure. A few such schemes have been proposed in recent literature, but they have vanishing rate. We prove that communication performance can potentially be vastly improved; specifically, our basic setup assumes independently and identically distributed (i.i.d.) covertext, and we construct perfectly secure steganographic codes from public watermarking codes using binning methods and randomized permutations of the code. The permutation is a secret key shared between encoder and decoder. We derive (positive) capacity and random-coding exponents for perfectly-secure steganographic systems. The error exponents provide estimates of the code length required to achieve a target low error probability. We address the potential loss in communication performance due to the perfect-security requirement. This loss is the same as the loss obtained under a weaker order-1 steganographic requirement that would just require matching of first-order marginals of the covertext and stegotext distributions. Furthermore, no loss occurs if the covertext distribution is uniform and the distortion metric is cyclically symmetric; steganographic capacity is then achieved by randomized linear codes. Our framework may also be useful for developing computationally secure steganographic systems that have near-optimal communication performance.Comment: To appear in IEEE Trans. on Information Theory, June 2008; ignore Version 2 as the file was corrupte
    • …
    corecore