667 research outputs found

    SLAM for Visually Impaired People: A Survey

    Full text link
    In recent decades, several assistive technologies for visually impaired and blind (VIB) people have been developed to improve their ability to navigate independently and safely. At the same time, simultaneous localization and mapping (SLAM) techniques have become sufficiently robust and efficient to be adopted in the development of assistive technologies. In this paper, we first report the results of an anonymous survey conducted with VIB people to understand their experience and needs; we focus on digital assistive technologies that help them with indoor and outdoor navigation. Then, we present a literature review of assistive technologies based on SLAM. We discuss proposed approaches and indicate their pros and cons. We conclude by presenting future opportunities and challenges in this domain.Comment: 26 pages, 5 tables, 3 figure

    AmIE: An Ambient Intelligent Environment for Assisted Living

    Full text link
    In the modern world of technology Internet-of-things (IoT) systems strives to provide an extensive interconnected and automated solutions for almost every life aspect. This paper proposes an IoT context-aware system to present an Ambient Intelligence (AmI) environment; such as an apartment, house, or a building; to assist blind, visually-impaired, and elderly people. The proposed system aims at providing an easy-to-utilize voice-controlled system to locate, navigate and assist users indoors. The main purpose of the system is to provide indoor positioning, assisted navigation, outside weather information, room temperature, people availability, phone calls and emergency evacuation when needed. The system enhances the user's awareness of the surrounding environment by feeding them with relevant information through a wearable device to assist them. In addition, the system is voice-controlled in both English and Arabic languages and the information are displayed as audio messages in both languages. The system design, implementation, and evaluation consider the constraints in common types of premises in Kuwait and in challenges, such as the training needed by the users. This paper presents cost-effective implementation options by the adoption of a Raspberry Pi microcomputer, Bluetooth Low Energy devices and an Android smart watch.Comment: 6 pages, 8 figures, 1 tabl

    IO Vision – an integrated system to support the visually impaired

    Get PDF
    Security questions are one of the techniques used to recover passwords. The main limitation of security questions is that users find strong answers difficult to remember. This leads users to trade-off security for the convenience of an improved memorability. Previous research found that increased fun and enjoyment can lead to an enhanced memorability, which provides a better learning experience. Hence, we empirically investigate whether a serious game has the potential of improving the memorability of strong answers to security questions. For our serious game, we adopted the popular “4 Pics 1 word” mobile game because of its use of pictures and cues, which psychology research found to be important to help with memorability. Our findings indicate that the proposed serious game could potentially improve the memorability of answers to security questions. This potential improvement in memorability, could eventually help reduce the trade-off between usability and security in fall-back authentication

    Unifying terrain awareness for the visually impaired through real-time semantic segmentation.

    Get PDF
    Navigational assistance aims to help visually-impaired people to ambulate the environment safely and independently. This topic becomes challenging as it requires detecting a wide variety of scenes to provide higher level assistive awareness. Vision-based technologies with monocular detectors or depth sensors have sprung up within several years of research. These separate approaches have achieved remarkable results with relatively low processing time and have improved the mobility of impaired people to a large extent. However, running all detectors jointly increases the latency and burdens the computational resources. In this paper, we put forward seizing pixel-wise semantic segmentation to cover navigation-related perception needs in a unified way. This is critical not only for the terrain awareness regarding traversable areas, sidewalks, stairs and water hazards, but also for the avoidance of short-range obstacles, fast-approaching pedestrians and vehicles. The core of our unification proposal is a deep architecture, aimed at attaining efficient semantic understanding. We have integrated the approach in a wearable navigation system by incorporating robust depth segmentation. A comprehensive set of experiments prove the qualified accuracy over state-of-the-art methods while maintaining real-time speed. We also present a closed-loop field test involving real visually-impaired users, demonstrating the effectivity and versatility of the assistive framework

    A Smart Real-Time Standalone Route Recognition System for Visually Impaired Persons

    Get PDF
    Visual Impairment is a common disability that results in poor or no eyesight, whose victims suffer inconveniences in performing their daily tasks. Visually impaired persons require some aids to interact with their environment safely. Existing navigation systems like electronic travel aids (ETAs) are mostly cloud-based and rely heavily on the internet and google map. This implies that systems deployment in locations with poor internet facilities and poorly structured environments is not feasible. This paper proposed a smart real-time standalone route recognition system for visually impaired persons. The proposed system makes use of a pedestrian route network, an interconnection of paths and their associated route tables, for providing directions of known locations in real-time for the user. Federal University of Technology (FUT), Minna, Gidan Kwanu campus was used as the case study. The result obtained from testing of the device search strategy on the field showed that the complexity of the algorithm used in searching for paths in the pedestrian network is , at worst-case scenario, where N is the number of paths available in the network. The accuracy of path recognition is 100%. This implies that the developed system is reliable and can be used in recognizing and navigating routes by the visual impaired in real-time

    Ambient awareness on a sidewalk for visually impaired

    Get PDF
    Safe navigation by avoiding obstacles is vital for visually impaired while walking on a sidewalk. There are both static and dynamic obstacles to avoid. Detection, monitoring, and estimating the threat posed by obstacles remain challenging. Also, it is imperative that the design of the system must be energy efficient and low cost. An additional challenge in designing an interactive system capable of providing useful feedback is to minimize users\u27 cognitive load. We started the development of the prototype system through classifying obstacles and providing feedback. To overcome the limitations of the classification-based system, we adopted the image annotation framework in describing the scene, which may or may not include the obstacles. Both solutions partially solved the safe navigation but were found to be ineffective in providing meaningful feedback and issues with the diurnal cycle. To address such limitations, we introduce the notion of free-path and threat level imposed by the static or dynamic obstacles. This solution reduced the overhead of obstacle detection and helped in designing meaningful feedback. Affording users a natural conversation through an interactive dialog enabled interface was found to promote safer navigation. In this dissertation, we modeled the free-path and threat level using a reinforcement learning (RL) framework.We built the RL model in the Gazebo robot simulation environment and implanted that in a handheld device. A natural conversation model was created using data collected through a Wizard of OZ approach. The RL model and conversational agent model together resulted in the handheld assistive device called Augmented Guiding Torch (AGT). The AGT provides improved mobility over white cane by providing ambient awareness through natural conversation. It can inform the visually impaired about the obstacles which are helpful to be warned about ahead of time, e.g., construction site, scooter, crowd, car, bike, or big hole. Using the RL framework, the robot avoided over 95% obstacles. The visually impaired avoided over 85% obstacles with the help of AGT on a 500 feet U-shape sidewalk. Findings of this dissertation support the effectiveness of augmented guiding through RL for navigation and obstacle avoidance of visually impaired users

    Implementation of a Blind navigation method in outdoors/indoors areas

    Full text link
    According to WHO statistics, the number of visually impaired people is increasing annually. One of the most critical necessities for visually impaired people is the ability to navigate safely. This paper proposes a navigation system based on the visual slam and Yolo algorithm using monocular cameras. The proposed system consists of three steps: obstacle distance estimation, path deviation detection, and next-step prediction. Using the ORB-SLAM algorithm, the proposed method creates a map from a predefined route and guides the users to stay on the route while notifying them if they deviate from it. Additionally, the system utilizes the YOLO algorithm to detect obstacles along the route and alert the user. The experimental results, obtained by using a laptop camera, show that the proposed system can run in 30 frame per second while guiding the user within predefined routes of 11 meters in indoors and outdoors. The accuracy of the positioning system is 8cm, and the system notifies the users if they deviate from the predefined route by more than 60 cm.Comment: 14 pages, 6 figures and 6 table
    • …
    corecore