20 research outputs found

    Data Auditing and Security in Cloud Computing: Issues, Challenges and Future Directions

    Get PDF
    Cloud computing is one of the significant development that utilizes progressive computational power and upgrades data distribution and data storing facilities. With cloud information services, it is essential for information to be saved in the cloud and also distributed across numerous customers. Cloud information repository is involved with issues of information integrity, data security and information access by unapproved users. Hence, an autonomous reviewing and auditing facility is necessary to guarantee that the information is effectively accommodated and used in the cloud. In this paper, a comprehensive survey on the state-of-art techniques in data auditing and security are discussed. Challenging problems in information repository auditing and security are presented. Finally, directions for future research in data auditing and security have been discussed

    Data auditing and security in cloud computing: issues, challenges and future directions

    Get PDF
    Cloud computing is one of the significant development that utilizes progressive computational power and upgrades data distribution and data storing facilities. With cloud information services, it is essential for information to be saved in the cloud and also distributed across numerous customers. Cloud information repository is involved with issues of information integrity, data security and information access by unapproved users. Hence, an autonomous reviewing and auditing facility is necessary to guarantee that the information is effectively accommodated and used in the cloud. In this paper, a comprehensive survey on the state-of-art techniques in data auditing and security are discussed. Challenging problems in information repository auditing and security are presented. Finally, directions for future research in data auditing and security have been discusse

    An extensive research survey on data integrity and deduplication towards privacy in cloud storage

    Get PDF
    Owing to the highly distributed nature of the cloud storage system, it is one of the challenging tasks to incorporate a higher degree of security towards the vulnerable data. Apart from various security concerns, data privacy is still one of the unsolved problems in this regards. The prime reason is that existing approaches of data privacy doesn't offer data integrity and secure data deduplication process at the same time, which is highly essential to ensure a higher degree of resistance against all form of dynamic threats over cloud and internet systems. Therefore, data integrity, as well as data deduplication is such associated phenomena which influence data privacy. Therefore, this manuscript discusses the explicit research contribution toward data integrity, data privacy, and data deduplication. The manuscript also contributes towards highlighting the potential open research issues followed by a discussion of the possible future direction of work towards addressing the existing problems

    A COMPREHENSIVE STUDY OF CRYPTOGRAPHY AND KEY MANAGEMENT BASED SECURITY IN CLOUD COMPUTING

    Get PDF
    Cloud computing is a cost effective flexible and proven delivery platform for providing consumer IT services or business services over internet. It has an ability to provide many services over internet. It not only provides computing services but additional computing resources. To interact with various services in the cloud and to store retrieve data from cloud several security mechanism is required. Cryptography and key management mechanism are one of the import services in the cloud to secure data. In this context, this paper investigates the basic problem of cloud computing with cryptography and key management system for enabling support of interoperability between cloud cryptography client and key management services

    Data storage security and privacy in cloud computing: A comprehensive survey

    Get PDF
    Cloud Computing is a form of distributed computing wherein resources and application platforms are distributed over the Internet through on demand and pay on utilization basis. Data Storage is main feature that cloud data centres are provided to the companies/organizations to preserve huge data. But still few organizations are not ready to use cloud technology due to lack of security. This paper describes the different techniques along with few security challenges, advantages and also disadvantages. It also provides the analysis of data security issues and privacy protection affairs related to cloud computing by preventing data access from unauthorized users, managing sensitive data, providing accuracy and consistency of data store

    Secure data sharing in cloud computing: a comprehensive review

    Get PDF
    Cloud Computing is an emerging technology, which relies on sharing computing resources. Sharing of data in the group is not secure as the cloud provider cannot be trusted. The fundamental difficulties in distributed computing of cloud suppliers is Data Security, Sharing, Resource scheduling and Energy consumption. Key-Aggregate cryptosystem used to secure private/public data in the cloud. This key is consistent size aggregate for adaptable decisions of ciphertext in cloud storage. Virtual Machines (VMs) provisioning is effectively empowered the cloud suppliers to effectively use their accessible resources and get higher benefits. The most effective method to share information resources among the individuals from the group in distributed storage is secure, flexible and efficient. Any data stored in different cloud data centers are corrupted, recovery using regenerative coding. Security is provided many techniques like Forward security, backward security, Key-Aggregate cryptosystem, Encryption and Re-encryption etc. The energy is reduced using Energy-Efficient Virtual Machines Scheduling in Multi-Tenant Data Centers

    Light-Weight Accountable Privacy Preserving Protocol in Cloud Computing Based on a Third-Party Auditor

    Get PDF
    Cloud computing is emerging as the next disruptive utility paradigm [1]. It provides extensive storage capabilities and an environment for application developers through virtual machines. It is also the home of software and databases that are accessible, on-demand. Cloud computing has drastically transformed the way organizations, and individual consumers access and interact with Information Technology. Despite significant advancements in this technology, concerns about security are holding back businesses from fully adopting this promising information technology trend. Third-party auditors (TPAs) are becoming more common in cloud computing implementations. Hence, involving auditors comes with its issues such as trust and processing overhead. To achieve productive auditing, we need to (1) accomplish efficient auditing without requesting the data location or introducing processing overhead to the cloud client; (2) avoid introducing new security vulnerabilities during the auditing process. There are various security models for safeguarding the CCs (Cloud Client) data in the cloud. The TPA systematically examines the evidence of compliance with established security criteria in the connection between the CC and the Cloud Service Provider (CSP). The CSP provides the clients with cloud storage, access to a database coupled with services. Many security models have been elaborated to make the TPA more reliable so that the clients can trust the third-party auditor with their data. Our study shows that involving a TPA might come with its shortcomings, such as trust concerns, extra overhead, security, and data manipulation breaches; as well as additional processing, which leads to the conclusion that a lightweight and secure protocol is paramount to the solution. As defined in [2] privacy-preserving is making sure that the three cloud stakeholders are not involved in any malicious activities coming from insiders at the CSP level, making sure to remediate to TPA vulnerabilities and that the CC is not deceitfully affecting other clients. In our survey phase, we have put into perspective the privacy-preserving solutions as they fit the lightweight requirements in terms of processing and communication costs, ending up by choosing the most prominent ones to compare with them our simulation results. In this dissertation, we introduce a novel method that can detect a dishonest TPA: The Light-weight Accountable Privacy-Preserving (LAPP) Protocol. The lightweight characteristic has been proven simulations as the minor impact of our protocol in terms of processing and communication costs. This protocol determines the malicious behavior of the TPA. To validate our proposed protocol’s effectiveness, we have conducted simulation experiments by using the GreenCloud simulator. Based on our simulation results, we confirm that our proposed model provides better outcomes as compared to the other known contending methods

    Identity-based edge computing anonymous authentication protocol

    Get PDF
    With the development of sensor technology and wireless communication technology, edge computing has a wider range of applications. The privacy protection of edge computing is of great significance. In the edge computing system, in order to ensure the credibility of the source of terminal data, mobile edge computing (MEC) needs to verify the signature of the terminal node on the data. During the signature process, the computing power of edge devices such as wireless terminals can easily become the bottleneck of system performance. Therefore, it is very necessary to improve efficiency through computational offloading. Therefore, this paper proposes an identity-based edge computing anonymous authentication protocol. The protocol realizes mutual authentication and obtains a shared key by encrypting the mutual information. The encryption algorithm is implemented through a thresholded identity-based proxy ring signature. When a large number of terminals offload computing, MEC can set the priority of offloading tasks according to the user’s identity and permissions, thereby improving offloading efficiency. Security analysis shows that the scheme can guarantee the anonymity and unforgeability of signatures. The probability of a malicious node forging a signature is equivalent to cracking the discrete logarithm puzzle. According to the efficiency analysis, in the case of MEC offloading, the computational complexity is significantly reduced, the computing power of edge devices is liberated, and the signature efficiency is improved
    corecore