825 research outputs found

    Methodological Fundamentalism: or why Batterman’s Different Notions of ‘Fundamentalism’ may not make a Difference

    Get PDF
    I argue that the distinctions Robert Batterman (2004) presents between ‘epistemically fundamental’ versus ‘ontologically fundamental’ theoretical approaches can be subsumed by methodologically fundamental procedures. I characterize precisely what is meant by a methodologically fundamental procedure, which involves, among other things, the use of multilinear graded algebras in a theory’s formalism. For example, one such class of algebras I discuss are the Clifford (or Geometric) algebras. Aside from their being touted by many as a “unified mathematical language for physics,” (Hestenes (1984, 1986) Lasenby, et. al. (2000)) Finkelstein (2001, 2004) and others have demonstrated that the techniques of multilinear algebraic ‘expansion and contraction’ exhibit a robust regularizablilty. That is to say, such regularization has been demonstrated to remove singularities, which would otherwise appear in standard field-theoretic, mathematical characterizations of a physical theory. I claim that the existence of such methodologically fundamental procedures calls into question one of Batterman’s central points, that “our explanatory physical practice demands that we appeal essentially to (infinite) idealizations” (2003, 7) exhibited, for example, by singularities in the case of modeling critical phenomena, like fluid droplet formation. By way of counterexample, in the field of computational fluid dynamics (CFD), I discuss the work of Mann & Rockwood (2003) and Gerik Scheuermann, (2002). In the concluding section, I sketch a methodologically fundamental procedure potentially applicable to more general classes of critical phenomena appearing in fluid dynamics

    Efficient Localization of Discontinuities in Complex Computational Simulations

    Full text link
    Surrogate models for computational simulations are input-output approximations that allow computationally intensive analyses, such as uncertainty propagation and inference, to be performed efficiently. When a simulation output does not depend smoothly on its inputs, the error and convergence rate of many approximation methods deteriorate substantially. This paper details a method for efficiently localizing discontinuities in the input parameter domain, so that the model output can be approximated as a piecewise smooth function. The approach comprises an initialization phase, which uses polynomial annihilation to assign function values to different regions and thus seed an automated labeling procedure, followed by a refinement phase that adaptively updates a kernel support vector machine representation of the separating surface via active learning. The overall approach avoids structured grids and exploits any available simplicity in the geometry of the separating surface, thus reducing the number of model evaluations required to localize the discontinuity. The method is illustrated on examples of up to eleven dimensions, including algebraic models and ODE/PDE systems, and demonstrates improved scaling and efficiency over other discontinuity localization approaches

    Model Reduction and Neural Networks for Parametric PDEs

    Get PDF
    We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature

    Dynamic Homotopy and Landscape Dynamical Set Topology in Quantum Control

    Full text link
    We examine the topology of the subset of controls taking a given initial state to a given final state in quantum control, where "state" may mean a pure state |\psi>, an ensemble density matrix \rho, or a unitary propagator U(0,T). The analysis consists in showing that the endpoint map acting on control space is a Hurewicz fibration for a large class of affine control systems with vector controls. Exploiting the resulting fibration sequence and the long exact sequence of basepoint-preserving homotopy classes of maps, we show that the indicated subset of controls is homotopy equivalent to the loopspace of the state manifold. This not only allows us to understand the connectedness of "dynamical sets" realized as preimages of subsets of the state space through this endpoint map, but also provides a wealth of additional topological information about such subsets of control space.Comment: Minor clarifications, and added new appendix addressing scalar control of 2-level quantum system
    • 

    corecore