12,878 research outputs found

    Dielectric mixtures -- electrical properties and modeling

    Full text link
    In this paper, a review on dielectric mixtures and the importance of the numerical simulations of dielectric mixtures are presented. It stresses on the interfacial polarization observed in mixtures. It is shown that this polarization can yield different dielectric responses depending on the properties of the constituents and their concentrations. Open question on the subject are also introduced.Comment: 40 pages 12 figures, to be appear in IEEE Trans. on Dielectric

    Freeform Fabrication of Ionomeric Polymer-Metal Composite Actuators

    Get PDF
    Ionomeric polymer-metal composite (IPMC) actuators are a type of soft electromechanically active material which offers large displacement, rapid motion with only ~1V stimulus. IPMC’s are entering commercial applications in toys (Ashley 2003) and biomedical devices (Soltanpour 2001; Shahinpoor 2002; Shahinpoor, Shahinpoor et al. 2003; Soltanpour and Shahinpoor 2003; Soltanpour and Shahinpoor 2004), but unfortunately they can only actuate by bending, limiting their utility. Freeform fabrication offers a possible means of producing IPMC with novel geometry and/or tightly integrated with mechanisms which can yield linear or more complex motion. We have developed materials and processes which allow us to freeform fabricate complete IPMC actuators and their fabrication substrate which will allow integration within other freeform fabricated devices. We have produced simple IPMC’s using our multiple material freeform fabrication system, and have demonstrated operation in air for more than 40 minutes and 256 bidirectional actuation cycles. The output stress scaled to input power is two orders of magnitude inferior to that of the best reported performance for devices produced in the traditional manner, but only slightly inferior to devices produced in a more similar manner. Possible explanations and paths to improvement are presented. Freeform fabrication of complete electroactive polymer actuators in unusual geometries, with tailored actuation behavior, and integrated with other freeform fabricated active components, will enable advances in biomedical device engineering, biologically inspired robotics, and other fields. This work constitutes the first demonstration of complete, functional, IPMC actuators produced entirely by freeform fabrication.Mechanical Engineerin

    Study of parameters dominating electromechanical and sensing response in ionic electroactive polymer (IEAP) transducers

    Get PDF
    Ionic electroactive polymer (IEAP) transducers are a class of smart structures based on polymers that can be designed as soft actuators or sensors. IEAP actuators exhibit a high mechanical response to an external electrical stimulus. Conversely, they produce electrical signals when subjected to mechanical force. IEAP transducers are mainly composed of four different components: The ionomeric membrane (usually Nafion) is an ion permeable polymer that acts as the backbone of the transducer. Two conductive network composite (CNC) layer on both sides of the ionomeric membrane that enhance the surface conductivity and serve as an extra reservoir to the electrolytes. The electrolytes, (usually ionic liquids (IL)), which provides the mobile ions. And two outer electrodes on both sides of the transducer to either provide a distributed applied potential across the actuators (usually gold leaves) or to collect the generated signals from the sensors (usually copper electrodes). Any variation in any of these components or the operating conditions will directly affect the performance of the IEAP transduces. In this dissertation, we studied some of the parameters dominating the performance of the IEAP transducers by varying some of the transducers components or the transducers operating conditions in order to enhance their performance. The first study was conducted to understand the influence of ionic liquid concentration on the electromechanical performance of IEAP actuators. The IL weight percentage (wt%) was varied from 10% to 30% and both the electromechanical (induced strain) and the electrochemical (the current flow across the actuators) were studied. The results from this study showed an enhanced electrochemical performance (current flow is higher for higher IL wt%) and a maximum electromechanical strain of approximately 1.4% at 22 wt% IL content. A lower induced strain was noticed for IL wt% lower or higher than 22%. The second study was to investigate the effect of changing the morphology of the CNC on the sensing performance of IEAP stress sensors. In this study, small salt molecules were added to the CNC layers. Salt molecules directly affected the morphology of the CNC layers resulting in a thicker, more porous, and high conductive CNCs. As a result, the ionic conductivity increased through the CNC layers and sensing performance was enhanced significantly. In the third study, a non-linear angular deformation (limb-like motion) was achieved by varying the CNC layers of the IEAP actuators by adding some conjugated polymers (CP) patterns during the fabrication of the actuators. It was found that the segments with the CP layers will only expand and never contract during the actuation process. Depending on the direction of motion and the location of the CP layers, different actuation shapes such as square or triangular shapes were achieved rather than the typical circular bending. In the fourth study, the influence of temperature on the electromechanical properties of the IEAP actuators was examined. In this study, both electromechanical and electrochemical studies were conducted for actuators that were operated at temperatures ranging from 25 ðC to 90 ðC. The electromechanical results showed a lower cationic curvature with increasing temperature up to 70 ðC. On the other hand, a maximum anionic curvature was achieved at 50 ðC with a sudden decrease after 50 ðC. Actuators started to lose functionality and showed unpredictable performance at temperatures higher than 70 ðC. Electrochemically, an enhancement of the ionic conductivity was resulted from increasing temperature up to 80 ðC. A sudden increase in current flow was recorded at 90 ðC indicating a shorted circuit and actuator failure. Finally, in the fifth study, protons in Nafion membranes were exchanged with other counterions of different Van der Waals volumes. The ionic conductivity was measured for IEAP membranes with different counterions at different temperatures. The results showed higher ionic conductivities across membranes with larger Van der Waals volume counterions and higher temperatures. A different ionic conductivity behavior was also noticed for temperatures ranging from 30 ÃÂÂșC to 55 ÃÂÂșC than temperatures between 55 ÃÂÂșC and 70 ÃÂÂșC after fitting the data with the Arrhenius conductivity equation

    Modeling and Optimal Control of Curvatures in IPMC's

    Get PDF
    There has been a growing number of research activities in the area of using smart materials in day to day lives because of their ability to serve both as sensors and actuators. Ionic Polymer Metal Composites (IPMCs) are one of such materials which have been extensively studied in the past few decades to not only understand its working principles but to also model and control their curvature. The problem of building an electromechanical model in order to explain the functioning of IPMCs under favorable and unfavorable conditions is still unsolved. This work proposes a control oriented electromechanical model for induced bending curvature in the IPMC material based on the empirical data received on Nafion based IPMC specimen. This model is further utilized to formulate a control oriented dynamic model from which an Optimal Control System was suggested for the IPMC actuator and supported by experimental results on the tip displacement

    Integrated static and dynamic modeling of an ionic polymer–metal composite actuator

    Get PDF
    Ionic polymer–metal composites have been widely used as actuators for robotic systems. In this article, we investigate and verify the characteristics of ionic polymer–metal composite actuators experimentally and theoretically. Two analytical models are utilized to analyze the performance of ionic polymer–metal composites: a linear irreversible electrodynamical model and a dynamic model. We find that the first model accurately predicts the static characteristics of the ionic polymer–metal composite according to the Onsager equations, while the second model is able to reveal the back relaxation characteristics of the ionic polymer–metal composite. We combine the static and dynamic models of the ionic polymer–metal composite and derive the transfer function for the ionic polymer–metal composite’s mechanical response to an electrical signal. A driving signal with a smooth slope and a low frequency is beneficial for the power efficiency

    Corrosion Resistance of Steel/Zinc with Silicate Nanoparticles/Polyurethane Paint Systems in NaCl Solution

    Get PDF
    Surface characteristics and corrosion behaviour of bare electrogalvanized steel coated with polymer/nano-silicate particles added to the electrogalvanizing bath were studied by scanning electron microscopy (SEM), energy dispersive spectrometer (EDXS) and electrochemical impedance spectroscopy (EIS). After applying a barrier polyurethane paint, the paint hardness, porosity, flexibility, colour, gloss, blistering and rusting degrees, and anticorrosive protective properties in 0.05 mol·L-1 NaCl solution were also evaluated. The results correlated well and, being demonstrative of the very slow deterioration rate of the immersed coated electrogalvanized steel, they enabled to assume that if a chemically analogous but thicker coating system was applied; it could be an acceptable alternative in real service conditions.Fil: Célia R. Tomachuk. Energy And Nuclearresearch Institute; BrasilFil: Elsner, Cecilia Ines. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; ArgentinaFil: Di Sarli, Alejandro Ramón. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentin
    • 

    corecore