2,177 research outputs found

    The impact of repetitive unclamped inductive switching on the electrical parameters of low-voltage trench power nMOSFETs

    Get PDF
    The impact of hot-carrier injection (HCI) due to repetitive unclamped inductive switching (UIS) on the electrical performance of low-voltage trench power n-type MOSFETs (nMOSFETs) is assessed. Trench power nMOSFETs with 20- and 30-V breakdown voltage ratings in TO-220 packages have been fabricated and subjected to over 100 million cycles of repetitive UIS with different avalanche currents IAV at a mounting base temperature TMB of 150Ā°C. Impact ionization during avalanche conduction in the channel causes hot-hole injection into the gate dielectric, which results in a reduction of the threshold voltage VGSTX, as the number of avalanche cycles N increases. The experimental data reveal a power-law relationship between the change in the threshold voltage Ī”VGSTX and N. The results show that the power-law prefactor is directly proportional to the avalanche current. After 100 million cycles, it was observed in the 20-V rated MOSFETs that the power-law prefactor increased by 30% when IAV was increased from 160 to 225 A, thereby approximating a linear relationship. A stable subthreshold slope with avalanche cycling indicates that interface trap generation may not be an active degradation mechanism. The impact of the cell pitch on avalanche ruggedness is also investigated by testing 2.5- and 4- m cell-pitch 30-V rated MOSFETs. Measurements showed that the power-law prefactor reduced by 40% when the cell pitch was reduced by 37.5%. The improved VGSTX stability with the smaller cell-pitch MOSFETs is attributed to a lower avalanche current per unit cell resulting in less hot-hole injection and, hence, smaller VGSTX shift. The 2.5-m cell-pitch MOSFETs also show 25% improved on -state resistance RDSON, better RDSON stability, and 20% less subthreshold slope compared with the 4-m cell-pitch MOSFETs, although with 100% higher initial IDSS and less IDSS stability with avalanche cycling. These results are important for manufacturers of automotive MOSFETs where multiple avalanche occurrences over the lifetime of the MOSFET are expected

    Analog Circuits in Ultra-Deep-Submicron CMOS

    Get PDF
    Modern and future ultra-deep-submicron (UDSM) technologies introduce several new problems in analog design. Nonlinear output conductance in combination with reduced voltage gain pose limits in linearity of (feedback) circuits. Gate-leakage mismatch exceeds conventional matching tolerances. Increasing area does not improve matching any more, except if higher power consumption is accepted or if active cancellation techniques are used. Another issue is the drop in supply voltages. Operating critical parts at higher supply voltages by exploiting combinations of thin- and thick-oxide transistors can solve this problem. Composite transistors are presented to solve this problem in a practical way. Practical rules of thumb based on measurements are derived for the above phenomena

    Testing Methodologies for Power Electronic Devices With focus on MOSFETs and IGBTs

    Get PDF
    Metal Oxide Semiconductor Field Eļ¬€ect Transistor (MOSF ET s) and Insu-lated Gate Bipolar Transistor (IGBT s); both are the state-of-the-art semiconductor switching devices.In this study an in-depth study of Metal Oxide Semiconductor (MOS) physics, cell structure and electrical characterization of MOSFETs and IGBTs has been con-ducted. The aim is to achieve a further improvement on the reliability and rugged-ness of these power electronic devices using ļ¬ndings of the research. These power devices have an extensive industrial and domestic applications, they are the building blocks of nearly all types of power electronic circuits, control systems and advanced digital data storages, laptop and phone chargers, motor drives in electric vehicle, PV converters, Wind converters, industrial heaters. Power electronic monitoring systems including DC to DC converters, DC to AC inverters, AC to DC rectiļ¬ers and AC to AC converter.Silvaco simulation and MATLAB modeling enabled the research to gain a vivid understanding of device operation MOS physics and all relevant electrical charac-teristics. The practical experiment side of the research includes high power semi-conductor devices characterization; testing of fabricated discrete devices comprising:(200V, 40A Silicon MOSFET; 1.2KV, 19A Silicon Carbide MOSFET; 600V, 20A and 40A Silicon IGBT; 1.2KV, 25A Silicon IGBT). Consequently, the research work gained an insight to the semiconductor switching latest technologies that are useful for the optimization consideration of power electronic devices. Observations from published journals enabled to see the existing relevant research gaps and works car-ried out by other scientists around this ļ¬eld area. Silicon is the working material for this masterā€™s by research thesis. Moreover, this paper also looks into the great beneļ¬ts of using silicon-carbide as a material for the next generation technological innovations.Therefore, this research contributes towards device optimization in the following way:Firstly, at a single cell design level. Shielded trench gate geometry architecture outperforms planar gate structure. Secondly, fabricating using a Wide-band-gap material (WBG) enhances device performance greatly

    Improved electrothermal ruggedness in SiC MOSFETs compared with silicon IGBTs

    Get PDF
    A 1.2-kV/24-A SiC-MOSFET and a 1.2-kV/30-A Si-Insulated gate bipolar transistor (IGBT) have been electrothermally stressed in unclamped inductive switching conditions at different ambient temperatures ranging from -25 Ā°C to 125 Ā°C. The devices have been stressed with avalanche currents at their rated currents and 40% higher. The activation of the parasitic bipolar junction transistor (BJT) during avalanche mode conduction results from the increased body resistance causing a voltage drop between the source and body, greater than the emitter-base voltage of the parasitic BJT. Because the BJT current and temperature relate through a positive feedback mechanism, thermal runaway results in the destruction of the device. It is shown that the avalanche power sustained before the destruction of the device increases as the ambient temperature decreases. SiC MOSFETs are shown to be able to withstand avalanche currents equal to the rated forward current at 25 Ā°C, whereas IGBTs cannot sustain the same electrothermal stress. SiC MOSFETs are also shown to be capable of withstanding avalanche currents 40% above the rated forward current though only at reduced temperatures. An electrothermal model has been developed to explain the temperature dependency of the BJT latchup, and the results are supported by finite-element models

    Design, Characterization And Analysis Of Electrostatic Discharge (esd) Protection Solutions In Emerging And Modern Technologies

    Get PDF
    Electrostatic Discharge (ESD) is a significant hazard to electronic components and systems. Based on a specific processing technology, a given circuit application requires a customized ESD consideration that includes the devicesā€™ operating voltage, leakage current, breakdown constraints, and footprint. As new technology nodes mature every 3-5 years, design of effective ESD protection solutions has become more and more challenging due to the narrowed design window, elevated electric field and current density, as well as new failure mechanisms that are not well understood. The endeavor of this research is to develop novel, effective and robust ESD protection solutions for both emerging technologies and modern complementary metalā€“oxideā€“semiconductor (CMOS) technologies. The Si nanowire field-effect transistors are projected by the International Technology Roadmap for Semiconductors as promising next-generation CMOS devices due to their superior DC and RF performances, as well as ease of fabrication in existing Silicon processing. Aiming at proposing ESD protection solutions for nanowire based circuits, the dimension parameters, fabrication process, and layout dependency of such devices under Human Body Mode (HBM) ESD stresses are studied experimentally in company with failure analysis revealing the failure mechanism induced by ESD. The findings, including design methodologies, failure mechanism, and technology comparisons should provide practical knowhow of the development of ESD protection schemes for the nanowire based integrated circuits. Organic thin-film transistors (OTFTs) are the basic elements for the emerging flexible, printable, large-area, and low-cost organic electronic circuits. Although there are plentiful studies focusing on the DC stress induced reliability degradation, the operation mechanism of OTFTs iv subject to ESD is not yet available in the literature and are urgently needed before the organic technology can be pushed into consumer market. In this work, the ESD operation mechanism of OTFT depending on gate biasing condition and dimension parameters are investigated by extensive characterization and thorough evaluation. The device degradation evolution and failure mechanism under ESD are also investigated by specially designed experiments. In addition to the exploration of ESD protection solutions in emerging technologies, efforts have also been placed in the design and analysis of a major ESD protection device, diodetriggered-silicon-controlled-rectifier (DTSCR), in modern CMOS technology (90nm bulk). On the one hand, a new type DTSCR having bi-directional conduction capability, optimized design window, high HBM robustness and low parasitic capacitance are developed utilizing the combination of a bi-directional silicon-controlled-rectifier and bi-directional diode strings. On the other hand, the HBM and Charged Device Mode (CDM) ESD robustness of DTSCRs using four typical layout topologies are compared and analyzed in terms of trigger voltage, holding voltage, failure current density, turn-on time, and overshoot voltage. The advantages and drawbacks of each layout are summarized and those offering the best overall performance are suggested at the en

    Design And Modeling Of Radiation Hardened Ldmosfet For Space Craft Power Systems

    Get PDF
    NASA missions require innovative power electronics system and component solutions with long life capability, high radiation tolerance, low mass and volume, and high reliability in space environments. Presently vertical double-diffused MOSFETs (VDMOS) are the most widely used power switching device for space power systems. It is proposed that a new lateral double-diffused MOSFET (LDMOS) designed at UCF can offer improvements in total dose and single event radiation hardness, switching performance, development and manufacturing costs, and total mass of power electronics systems. Availability of a hardened fast-switching power MOSFET will allow space-borne power electronics to approach the current level of terrestrial technology, thereby facilitating the use of more modern digital electronic systems in space. It is believed that the use of a p+/p-epi starting material for the LDMOS will offer better hardness against single-event burnout (SEB) and single-event gate rupture (SEGR) when compared to vertical devices fabricated on an n+/n-epi material. By placing a source contact on the bottom-side of the p+ substrate, much of the hole current generated by a heavy ion strike will flow away from the dielectric gate, thereby reducing electrical stress on the gate and decreasing the likelihood of SEGR. Similarly, the device is hardened against SEB by the redirection of hole current away from the base of the device\u27s parasitic bipolar transistor. Total dose hardness is achieved by the use of a standard complementary metal-oxide semiconductor (CMOS) process that has shown proven hardness against total dose radiation effects

    Survey of cryogenic semiconductor devices

    Full text link

    CMOS-compatible high-voltage transistors

    Get PDF
    • ā€¦
    corecore