13 research outputs found

    Optimization and evaluation of variability in the programming window of a flash cell with molecular metal-oxide storage

    Get PDF
    We report a modeling study of a conceptual nonvolatile memory cell based on inorganic molecular metal-oxide clusters as a storage media embedded in the gate dielectric of a MOSFET. For the purpose of this paper, we developed a multiscale simulation framework that enables the evaluation of variability in the programming window of a flash cell with sub-20-nm gate length. Furthermore, we studied the threshold voltage variability due to random dopant fluctuations and fluctuations in the distribution of the molecular clusters in the cell. The simulation framework and the general conclusions of our work are transferrable to flash cells based on alternative molecules used for a storage media

    Performance Oriented Functionalisation of Concrete: an Integrated Approach for Prevention in Construction

    Get PDF
    The long-term preservation and the future-oriented development of the infrastructure are of utmost importance for every country in the world. An increasing failure of infrastructure underpins a tremendous need for action. The reasons for this unsatisfactory situation are various, but certainly among them is often an insufficient performance of the building materials. This holds particularly true for reinforced concrete and its additives, which are nowadays commonly developed by empirical research. Almost all shortcomings of concrete durability are related to the transport of detrimental substances into the pore system. In this regard, a promising approach to prevent chemical deterioration processes is a functionalisation of the pore system by means of organosilicon-based surface treatments in order to hamper the uptake of aggressive aqueous solutions. However, little is known about the reaction mechanisms and the nature of the reaction products associated with such measures. However, this is necessary to obtain reliable information about their performance and ideally to develop these technologies further in a more target-oriented manner. The insufficient understanding of these processes has its origins in the inability of investigations of the reaction course of silicon organic compounds in the pore structure of cement-based systems and their underlying physical and chemical principles. This applies in particular to film-forming reactions in alkaline environments of the pore structure, which lead to functionalization (e.g. hydrophobic effect). The approach of this study is therefore to investigate the reaction products in model systems using mass spectrometry and to explain the course of the reaction by means of computational chemistry. In this way, reaction products of different reaction steps of the condensation of specific components into larger oligomers were characterized and the reaction sequence was explained by molecular modelling. These results contribute to a deeper understanding of the reactions and types of reaction products of organosilicon compounds used to improve the properties of cement-bound materials. This promotes further steps towards the performance-oriented development of such surface protection technologies

    Understanding chemical reactivity using the activation strain model

    Get PDF
    Contains fulltext : 216198.pdf (publisher's version ) (Closed access

    Spectroscopic Insight into Oxidative Heme Cleavage by the Non-canonical Heme Oxygenase IsdG from Staphylococcus aureus

    Get PDF
    IsdG and IsdI are non-canonical heme oxygenases (HO) from Staphylococcus aureus that catalyze the oxidative cleavage of heme to give novel organic products (staphylobilins) and iron as a nutrient for the pathogen. Comparison of the reported equilibrium dissociation constant (Kd) values for heme from IsdG and IsdI compared to the reported concentration of the labile heme pool called into question whether these enzymes are competent HOs in vivo. We took advantage of a second-sphere Trp whose fluorescence is quenched upon heme binding, which led to Kd values 2-3 orders of magnitude smaller than reported in the literature. Importantly, these Kd values were on the same order of magnitude as human HO, precluding design of a competitive inhibitor as an effective therapeutic. Based upon the kinetic and equilibrium data, and the finding that the half-life of IsdG is increased 2.5-fold by the presence of heme, we proposed IsdG is the main HO involved in iron acquisition which motivated further characterization of IsdG. IsdG-catalyzed heme catabolism proceeds through ferric-peroxoheme and meso-hydroxyheme intermediates en route to staphylobilin. A second-sphere Asn is known to be critical for enzymatic function, but its role in heme cleavage was unknown. Site-directed mutagenesis was employed to probe the role of Asn using ferric-azidoheme and ferric-cyanoheme as models of the putative ferric-peroxoheme intermediate. An optical spectroscopic study established that a hydrogen-bond between Asn and the iron-ligating (α) atom of the distal ligand perturbs the heme electronic structure. Density functional theory (DFT) suggested this hydrogen-bond triggers rotation of the distal ligand, which was corroborated by circular dichroism (CD), and delocalizes spin density onto the meso carbons. Electron paramagnetic resonance (EPR) revealed the Asn hydrogen-bond increases the Fe 3dxy character in the singly occupied molecular orbital (SOMO), a mechanism that can increase spin density on the meso carbons. Finally, the Asn hydrogen-bond moves the meso carbon resonances downfield in the 13C nuclear magnetic resonance (NMR) spectrum, consistent with excess spin density, confirming a DFT-predicted, Asn-induced spin delocalization. These results suggest IsdG funnels the reactivity of ferric-peroxoheme toward heme hydroxylation through an Asn-dependent bridged transition state, circumventing production of reactive, uncontrolled intermediates
    corecore