21 research outputs found

    A Polynomial Kernel for Deletion to Ptolemaic Graphs

    Get PDF
    For a family of graphs F, given a graph G and an integer k, the F-Deletion problem asks whether we can delete at most k vertices from G to obtain a graph in the family F. The F-Deletion problems for all non-trivial families F that satisfy the hereditary property on induced subgraphs are known to be NP-hard by a result of Yannakakis (STOC\u2778). Ptolemaic graphs are the graphs that satisfy the Ptolemy inequality, and they are the intersection of chordal graphs and distance-hereditary graphs. Equivalently, they form the set of graphs that do not contain any chordless cycles or a gem as an induced subgraph. (A gem is the graph on 5 vertices, where four vertices form an induced path, and the fifth vertex is adjacent to all the vertices of this induced path.) The Ptolemaic Deletion problem is the F-Deletion problem, where F is the family of Ptolemaic graphs. In this paper we study Ptolemaic Deletion from the viewpoint of Kernelization Complexity, and obtain a kernel with ?(k?) vertices for the problem

    Decycling a graph by the removal of a matching: new algorithmic and structural aspects in some classes of graphs

    Full text link
    A graph GG is {\em matching-decyclable} if it has a matching MM such that GMG-M is acyclic. Deciding whether GG is matching-decyclable is an NP-complete problem even if GG is 2-connected, planar, and subcubic. In this work we present results on matching-decyclability in the following classes: Hamiltonian subcubic graphs, chordal graphs, and distance-hereditary graphs. In Hamiltonian subcubic graphs we show that deciding matching-decyclability is NP-complete even if there are exactly two vertices of degree two. For chordal and distance-hereditary graphs, we present characterizations of matching-decyclability that lead to O(n)O(n)-time recognition algorithms

    On the Galois Lattice of Bipartite Distance Hereditary Graphs

    Get PDF
    We give a complete characterization of bipartite graphs hav- ing tree-like Galois lattices. We prove that the poset obtained by deleting bottom and top elements from the Galois lattice of a bipartite graph is tree-like if and only if the graph is a Bipartite Distance Hereditary graph. We show that the lattice can be realized as the containment relation among directed paths in an arborescence. Moreover, a compact encoding of Bipartite Distance Hereditary graphs is proposed, that allows optimal time computation of neighborhood intersections and maximal bicliques

    Clique graphs and Helly graphs

    Get PDF
    AbstractAmong the graphs for which the system of cliques has the Helly property those are characterized which are clique-convergent to the one-vertex graph. These graphs, also known as the so-called absolute retracts of reflexive graphs, are the line graphs of conformal Helly hypergraphs possessing a certain elimination scheme. From particular classes of such hypergraphs one can readily construct various classes G of graphs such that each member of G has its clique graph in G and is itself the clique graph of some other member of G. Examples include the classes of strongly chordal graphs and Ptolemaic graphs, respectively

    A note on path domination

    Get PDF
    We study domination between different types of walks connecting two non-adjacent vertices u and v of a graph (shortest paths, induced paths, paths, tolled walks). We succeeded in characterizing those graphs in which every uv-walk of one particular kind dominates every uv-walk of other specific kind. We thereby obtained new characterizations of standard graph classes like chordal, interval and superfragile graphs.Facultad de Ciencias Exacta
    corecore