119,335 research outputs found

    A characterization of integral input-to-state stability

    Get PDF
    Abstract-The notion of input-to-state stability (ISS) is now recognized as a central concept in nonlinear systems analysis. It provides a nonlinear generalization of finite gains with respect to supremum norms and also of finite 2 gains. It plays a central role in recursive design, coprime factorizations, controllers for nonminimum phase systems, and many other areas. In this paper, a newer notion, that of integral input-to-state stability (iISS), is studied. The notion of iISS generalizes the concept of finite gain when using an integral norm on inputs but supremum norms of states, in that sense generalizing the linear " 2 " theory. It allows one to quantify sensitivity even in the presence of certain forms of nonlinear resonance. We obtain here several necessary and sufficient characterizations of the iISS property, expressed in terms of dissipation inequalities and other alternative and nontrivial characterizations. These characterizations serve to show that integral input-to-state stability is a most natural concept, one that might eventually play a role at least comparable to, if not even more important than, ISS

    Semi-uniform Input-to-state Stability of Infinite-dimensional Systems

    Full text link
    We introduce the notions of semi-uniform input-to-state stability and its subclass, polynomial input-to-state stability, for infinite-dimensional systems. We establish a characterization of semi-uniform input-to-state stability based on attractivity properties as in the uniform case. Sufficient conditions for linear systems to be polynomially input-to-state stable are provided, which restrict the range of the input operator depending on the rate of polynomial decay of the product of the semigroup and the resolvent of its generator. We also show that a class of bilinear systems are polynomially integral input-to-state stable under a certain smoothness assumption on nonlinear operators.Comment: 28 page

    On an integral variant of incremental input/output-to-state stability and its use as a notion of nonlinear detectability

    Full text link
    We propose a time-discounted integral variant of incremental input/output-to-state stability (i-iIOSS) together with an equivalent Lyapunov function characterization. Continuity of the i-iIOSS Lyapunov function is ensured if the system satisfies a certain continuity assumption involving the Osgood condition. We show that the proposed i-iIOSS notion is a necessary condition for the existence of a robustly globally asymptotically stable observer mapping in a time-discounted ``L2L^2-to-L∞L^\infty'' sense. In combination, our results provide a general framework for a Lyapunov-based robust stability analysis of observers for continuous-time systems, which in particular is crucial for the use of optimization-based state estimators (such as moving horizon estimation).Comment: replaced with accepted versio

    On Relaxed Conditions of Integral ISS for Multistable Periodic Systems

    Get PDF
    International audienceA novel characterization of the integral Inputto-State Stability (iISS) property is introduced for multistable systems whose dynamics are periodic with respect to a part of the state. First, the concepts of iISS-Leonov functions and output smooth dissipativity are introduced, then their equivalence to the properties of bounded-energy-bounded-state and global attractiveness of solutions in the absence of disturbances are proven. The proposed approach permits to relax the usual requirements of positive definiteness and periodicity of the iISS-Lyapunov functions. Moreover, the usefulness of the theoretical results is illustrated by a robustness analysis of a nonlinear pendulum with a constant bias input and an unbounded statedependent input coefficient

    Online Optimization of Dynamical Systems with Deep Learning Perception

    Full text link
    This paper considers the problem of controlling a dynamical system when the state cannot be directly measured and the control performance metrics are unknown or partially known. In particular, we focus on the design of data-driven controllers to regulate a dynamical system to the solution of a constrained convex optimization problem where: i) the state must be estimated from nonlinear and possibly high-dimensional data; and, ii) the cost of the optimization problem -- which models control objectives associated with inputs and states of the system -- is not available and must be learned from data. We propose a data-driven feedback controller that is based on adaptations of a projected gradient-flow method; the controller includes neural networks as integral components for the estimation of the unknown functions. Leveraging stability theory for perturbed systems, we derive sufficient conditions to guarantee exponential input-to-state stability (ISS) of the control loop. In particular, we show that the interconnected system is ISS with respect to the approximation errors of the neural network and unknown disturbances affecting the system. The transient bounds combine the universal approximation property of deep neural networks with the ISS characterization. Illustrative numerical results are presented in the context of control of robotics and epidemics.Comment: This is an extended version of the paper submitted to the IEEE Open Journal of Control Systems - Special Section on Machine Learning with Control, containing proof

    Lyapunov Conditions for Input-to-State Stability of Impulsive Systems

    Get PDF
    This paper introduces appropriate concepts of input-to-state stability (ISS) and integral-ISS for impulsive systems, i.e., dynamical systems that evolve according to ordinary differential equations most of the time, but occasionally exhibit discontinuities (or impulses). We provide a set of Lyapunov-based sufficient conditions for establishing these ISS properties. When the continuous dynamics are ISS but the discrete dynamics that govern the impulses are not, the impulses should not occur too frequently, which is formalized in terms of an average dwell-time (ADT) condition. Conversely, when the impulse dynamics are ISS but the continuous dynamics are not, there must not be overly long intervals between impulses, which is formalized in terms of a novel reverse ADT condition. We also investigate the cases where (i) both the continuous and discrete dynamics are ISS and (ii) one of these is ISS and the other only marginally stable for the zero input, while sharing a common Lyapunov function. In the former case we obtain a stronger notion of ISS, for which a necessary and sufficient Lyapunov characterization is available. The use of the tools developed herein is illustrated through examples from a Micro-Electro-Mechanical System (MEMS) oscillator and a problem of remote estimation over a communication network

    Feedforward/feedback control of multivariable nonlinear processes

    Full text link
    This paper concerns general MIMO nonlinear processes, whose dynamic behavior is described by a standard state-space model of arbitrary order, including measurable disturbances. The concept of relative order of an output with respect to an input, extended to include disturbance as well as manipulated inputs, is generalized in a MIMO context and it is used to obtain a characterization of the dynamic interactions among the input and the output variables. A synthesis formula is calculated for a feedforward/state feedback control law that completely eliminates the effect of the measurable disturbances on the process outputs and induces a linear behavior in the closed-loop system between the outputs and a set of reference inputs. The input/output stability and the degree of coupling in the closed-loop system are determined by appropriate choice of adjustable parameters. A MIMO linear controller with integral action completes the feedforward/feedback control structure. The developed control methodology is applied to a continuous polymerization reactor and its performance is evaluated through simulations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/37411/1/690361003_ftp.pd
    • …
    corecore