2,763 research outputs found

    Parity balance of the ii-th dimension edges in Hamiltonian cycles of the hypercube

    Full text link
    Let n≥2n\geq 2 be an integer, and let i∈{0,...,n−1}i\in\{0,...,n-1\}. An ii-th dimension edge in the nn-dimensional hypercube QnQ_n is an edge v1v2{v_1}{v_2} such that v1,v2v_1,v_2 differ just at their ii-th entries. The parity of an ii-th dimension edge \edg{v_1}{v_2} is the number of 1's modulus 2 of any of its vertex ignoring the ii-th entry. We prove that the number of ii-th dimension edges appearing in a given Hamiltonian cycle of QnQ_n with parity zero coincides with the number of edges with parity one. As an application of this result it is introduced and explored the conjecture of the inscribed squares in Hamiltonian cycles of the hypercube: Any Hamiltonian cycle in QnQ_n contains two opposite edges in a 4-cycle. We prove this conjecture for n≤7n \le 7, and for any Hamiltonian cycle containing more than 2n−22^{n-2} edges in the same dimension. This bound is finally improved considering the equi-independence number of Qn−1Q_{n-1}, which is a concept introduced in this paper for bipartite graphs

    Vertex decomposable graphs, codismantlability, Cohen-Macaulayness and Castelnuovo-Mumford regularity

    Get PDF
    We call a (simple) graph G codismantlable if either it has no edges or else it has a codominated vertex x, meaning that the closed neighborhood of x contains that of one of its neighbor, such that G-x codismantlable. We prove that if G is well-covered and it lacks induced cycles of length four, five and seven, than the vertex decomposability, codismantlability and Cohen-Macaulayness for G are all equivalent. The rest deals with the computation of Castelnuovo-Mumford regularity of codismantlable graphs. Note that our approach complements and unifies many of the earlier results on bipartite, chordal and very well-covered graphs

    Locating-dominating sets in twin-free graphs

    Full text link
    A locating-dominating set of a graph GG is a dominating set DD of GG with the additional property that every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)∩D≠N(v)∩DN(u) \cap D \ne N(v) \cap D where N(u)N(u) denotes the open neighborhood of uu. A graph is twin-free if every two distinct vertices have distinct open and closed neighborhoods. The location-domination number of GG, denoted γL(G)\gamma_L(G), is the minimum cardinality of a locating-dominating set in GG. It is conjectured [D. Garijo, A. Gonz\'alez and A. M\'arquez. The difference between the metric dimension and the determining number of a graph. Applied Mathematics and Computation 249 (2014), 487--501] that if GG is a twin-free graph of order nn without isolated vertices, then γL(G)≤n2\gamma_L(G)\le \frac{n}{2}. We prove the general bound γL(G)≤2n3\gamma_L(G)\le \frac{2n}{3}, slightly improving over the ⌊2n3⌋+1\lfloor\frac{2n}{3}\rfloor+1 bound of Garijo et al. We then provide constructions of graphs reaching the n2\frac{n}{2} bound, showing that if the conjecture is true, the family of extremal graphs is a very rich one. Moreover, we characterize the trees GG that are extremal for this bound. We finally prove the conjecture for split graphs and co-bipartite graphs.Comment: 11 pages; 4 figure

    Some recent results in the analysis of greedy algorithms for assignment problems

    Get PDF
    We survey some recent developments in the analysis of greedy algorithms for assignment and transportation problems. We focus on the linear programming model for matroids and linear assignment problems with Monge property, on general linear programs, probabilistic analysis for linear assignment and makespan minimization, and on-line algorithms for linear and non-linear assignment problems

    Independence and matching numbers of some token graphs

    Full text link
    Let GG be a graph of order nn and let k∈{1,…,n−1}k\in\{1,\ldots,n-1\}. The kk-token graph Fk(G)F_k(G) of GG, is the graph whose vertices are the kk-subsets of V(G)V(G), where two vertices are adjacent in Fk(G)F_k(G) whenever their symmetric difference is an edge of GG. We study the independence and matching numbers of Fk(G)F_k(G). We present a tight lower bound for the matching number of Fk(G)F_k(G) for the case in which GG has either a perfect matching or an almost perfect matching. Also, we estimate the independence number for bipartite kk-token graphs, and determine the exact value for some graphs.Comment: 16 pages, 4 figures. Third version is a major revision. Some proofs were corrected or simplified. New references adde
    • …
    corecore