3,855 research outputs found

    Sample path large deviations for multiclass feedforward queueing networks in critical loading

    Full text link
    We consider multiclass feedforward queueing networks with first in first out and priority service disciplines at the nodes, and class dependent deterministic routing between nodes. The random behavior of the network is constructed from cumulative arrival and service time processes which are assumed to satisfy an appropriate sample path large deviation principle. We establish logarithmic asymptotics of large deviations for waiting time, idle time, queue length, departure and sojourn-time processes in critical loading. This transfers similar results from Puhalskii about single class queueing networks with feedback to multiclass feedforward queueing networks, and complements diffusion approximation results from Peterson. An example with renewal inter arrival and service time processes yields the rate function of a reflected Brownian motion. The model directly captures stationary situations.Comment: Published at http://dx.doi.org/10.1214/105051606000000439 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Power of Online Learning in Stochastic Network Optimization

    Get PDF
    In this paper, we investigate the power of online learning in stochastic network optimization with unknown system statistics {\it a priori}. We are interested in understanding how information and learning can be efficiently incorporated into system control techniques, and what are the fundamental benefits of doing so. We propose two \emph{Online Learning-Aided Control} techniques, OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2}, that explicitly utilize the past system information in current system control via a learning procedure called \emph{dual learning}. We prove strong performance guarantees of the proposed algorithms: OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} achieve the near-optimal [O(Ο΅),O([log⁑(1/Ο΅)]2)][O(\epsilon), O([\log(1/\epsilon)]^2)] utility-delay tradeoff and OLAC2\mathtt{OLAC2} possesses an O(Ο΅βˆ’2/3)O(\epsilon^{-2/3}) convergence time. OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} are probably the first algorithms that simultaneously possess explicit near-optimal delay guarantee and sub-linear convergence time. Simulation results also confirm the superior performance of the proposed algorithms in practice. To the best of our knowledge, our attempt is the first to explicitly incorporate online learning into stochastic network optimization and to demonstrate its power in both theory and practice

    The Power of Online Learning in Stochastic Network Optimization

    Full text link
    In this paper, we investigate the power of online learning in stochastic network optimization with unknown system statistics {\it a priori}. We are interested in understanding how information and learning can be efficiently incorporated into system control techniques, and what are the fundamental benefits of doing so. We propose two \emph{Online Learning-Aided Control} techniques, OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2}, that explicitly utilize the past system information in current system control via a learning procedure called \emph{dual learning}. We prove strong performance guarantees of the proposed algorithms: OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} achieve the near-optimal [O(Ο΅),O([log⁑(1/Ο΅)]2)][O(\epsilon), O([\log(1/\epsilon)]^2)] utility-delay tradeoff and OLAC2\mathtt{OLAC2} possesses an O(Ο΅βˆ’2/3)O(\epsilon^{-2/3}) convergence time. OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} are probably the first algorithms that simultaneously possess explicit near-optimal delay guarantee and sub-linear convergence time. Simulation results also confirm the superior performance of the proposed algorithms in practice. To the best of our knowledge, our attempt is the first to explicitly incorporate online learning into stochastic network optimization and to demonstrate its power in both theory and practice

    Investigation of delay jitter of heterogeneous traffic in broadband networks

    Get PDF
    Scope and Methodology of Study: A critical challenge for both wired and wireless networking vendors and carrier companies is to be able to accurately estimate the quality of service (QoS) that will be provided based on the network architecture, router/switch topology, and protocol applied. As a result, this thesis focuses on the theoretical analysis of QoS parameters in term of inter-arrival jitter in differentiated services networks by deploying analytic/mathematical modeling technique and queueing theory, where the analytic model is expressed in terms of a set of equations that can be solved to yield the desired delay jitter parameter. In wireless networks with homogeneous traffic, the effects on the delay jitter in reference to the priority control scheme of the ARQ traffic for the two cases of: 1) the ARQ traffic has a priority over the original transmission traffic; and 2) the ARQ traffic has no priority over the original transmission traffic are evaluated. In wired broadband networks with heterogeneous traffic, the jitter analysis is conducted and the algorithm to control its effect is also developed.Findings and Conclusions: First, the results show that high priority packets always maintain the minimum inter-arrival jitter, which will not be affected even in heavy load situation. Second, the Gaussian traffic modeling is applied using the MVA approach to conduct the queue length analysis, and then the jitter analysis in heterogeneous broadband networks is investigated. While for wireless networks with homogeneous traffic, binomial distribution is used to conduct the queue length analysis, which is sufficient and relatively easy compared to heterogeneous traffic. Third, develop a service discipline called the tagged stream adaptive distortion-reducing peak output-rate enforcing to control and avoid the delay jitter increases without bound in heterogeneous broadband networks. Finally, through the analysis provided, the differential services, was proved not only viable, but also effective to control delay jitter. The analytic models that serve as guidelines to assist network system designers in controlling the QoS requested by customer in term of delay jitter

    Simple and explicit bounds for multi-server queues with 1/(1βˆ’Ο)1/(1 - \rho) (and sometimes better) scaling

    Full text link
    We consider the FCFS GI/GI/nGI/GI/n queue, and prove the first simple and explicit bounds that scale as 11βˆ’Ο\frac{1}{1-\rho} (and sometimes better). Here ρ\rho denotes the corresponding traffic intensity. Conceptually, our results can be viewed as a multi-server analogue of Kingman's bound. Our main results are bounds for the tail of the steady-state queue length and the steady-state probability of delay. The strength of our bounds (e.g. in the form of tail decay rate) is a function of how many moments of the inter-arrival and service distributions are assumed finite. More formally, suppose that the inter-arrival and service times (distributed as random variables AA and SS respectively) have finite rrth moment for some r>2.r > 2. Let ΞΌA\mu_A (respectively ΞΌS\mu_S) denote 1E[A]\frac{1}{\mathbb{E}[A]} (respectively 1E[S]\frac{1}{\mathbb{E}[S]}). Then our bounds (also for higher moments) are simple and explicit functions of E[(AΞΌA)r],E[(SΞΌS)r],r\mathbb{E}\big[(A \mu_A)^r\big], \mathbb{E}\big[(S \mu_S)^r\big], r, and 11βˆ’Ο\frac{1}{1-\rho} only. Our bounds scale gracefully even when the number of servers grows large and the traffic intensity converges to unity simultaneously, as in the Halfin-Whitt scaling regime. Some of our bounds scale better than 11βˆ’Ο\frac{1}{1-\rho} in certain asymptotic regimes. More precisely, they scale as 11βˆ’Ο\frac{1}{1-\rho} multiplied by an inverse polynomial in n(1βˆ’Ο)2.n(1 - \rho)^2. These results formalize the intuition that bounds should be tighter in light traffic as well as certain heavy-traffic regimes (e.g. with ρ\rho fixed and nn large). In these same asymptotic regimes we also prove bounds for the tail of the steady-state number in service. Our main proofs proceed by explicitly analyzing the bounding process which arises in the stochastic comparison bounds of amarnik and Goldberg for multi-server queues. Along the way we derive several novel results for suprema of random walks and pooled renewal processes which may be of independent interest. We also prove several additional bounds using drift arguments (which have much smaller pre-factors), and make several conjectures which would imply further related bounds and generalizations

    On Money as a Means of Coordination between Network Packets

    Full text link
    In this work, we apply a common economic tool, namely money, to coordinate network packets. In particular, we present a network economy, called PacketEconomy, where each flow is modeled as a population of rational network packets, and these packets can self-regulate their access to network resources by mutually trading their positions in router queues. Every packet of the economy has its price, and this price determines if and when the packet will agree to buy or sell a better position. We consider a corresponding Markov model of trade and show that there are Nash equilibria (NE) where queue positions and money are exchanged directly between the network packets. This simple approach, interestingly, delivers improvements even when fiat money is used. We present theoretical arguments and experimental results to support our claims
    • …
    corecore