728 research outputs found

    Serverless Strategies and Tools in the Cloud Computing Continuum

    Full text link
    Tesis por compendio[ES] En los últimos años, la popularidad de la computación en nube ha permitido a los usuarios acceder a recursos de cómputo, red y almacenamiento sin precedentes bajo un modelo de pago por uso. Esta popularidad ha propiciado la aparición de nuevos servicios para resolver determinados problemas informáticos a gran escala y simplificar el desarrollo y el despliegue de aplicaciones. Entre los servicios más destacados en los últimos años se encuentran las plataformas FaaS (Función como Servicio), cuyo principal atractivo es la facilidad de despliegue de pequeños fragmentos de código en determinados lenguajes de programación para realizar tareas específicas en respuesta a eventos. Estas funciones son ejecutadas en los servidores del proveedor Cloud sin que los usuarios se preocupen de su mantenimiento ni de la gestión de su elasticidad, manteniendo siempre un modelo de pago por uso de grano fino. Las plataformas FaaS pertenecen al paradigma informático conocido como Serverless, cuyo propósito es abstraer la gestión de servidores por parte de los usuarios, permitiéndoles centrar sus esfuerzos únicamente en el desarrollo de aplicaciones. El problema del modelo FaaS es que está enfocado principalmente en microservicios y tiende a tener limitaciones en el tiempo de ejecución y en las capacidades de computación (por ejemplo, carece de soporte para hardware de aceleración como GPUs). Sin embargo, se ha demostrado que la capacidad de autoaprovisionamiento y el alto grado de paralelismo de estos servicios pueden ser muy adecuados para una mayor variedad de aplicaciones. Además, su inherente ejecución dirigida por eventos hace que las funciones sean perfectamente adecuadas para ser definidas como pasos en flujos de trabajo de procesamiento de archivos (por ejemplo, flujos de trabajo de computación científica). Por otra parte, el auge de los dispositivos inteligentes e integrados (IoT), las innovaciones en las redes de comunicación y la necesidad de reducir la latencia en casos de uso complejos han dado lugar al concepto de Edge computing, o computación en el borde. El Edge computing consiste en el procesamiento en dispositivos cercanos a las fuentes de datos para mejorar los tiempos de respuesta. La combinación de este paradigma con la computación en nube, formando arquitecturas con dispositivos a distintos niveles en función de su proximidad a la fuente y su capacidad de cómputo, se ha acuñado como continuo de la computación en la nube (o continuo computacional). Esta tesis doctoral pretende, por lo tanto, aplicar diferentes estrategias Serverless para permitir el despliegue de aplicaciones generalistas, empaquetadas en contenedores de software, a través de los diferentes niveles del continuo computacional. Para ello, se han desarrollado múltiples herramientas con el fin de: i) adaptar servicios FaaS de proveedores Cloud públicos; ii) integrar diferentes componentes software para definir una plataforma Serverless en infraestructuras privadas y en el borde; iii) aprovechar dispositivos de aceleración en plataformas Serverless; y iv) facilitar el despliegue de aplicaciones y flujos de trabajo a través de interfaces de usuario. Además, se han creado y adaptado varios casos de uso para evaluar los desarrollos conseguidos.[CA] En els últims anys, la popularitat de la computació al núvol ha permès als usuaris accedir a recursos de còmput, xarxa i emmagatzematge sense precedents sota un model de pagament per ús. Aquesta popularitat ha propiciat l'aparició de nous serveis per resoldre determinats problemes informàtics a gran escala i simplificar el desenvolupament i desplegament d'aplicacions. Entre els serveis més destacats en els darrers anys hi ha les plataformes FaaS (Funcions com a Servei), el principal atractiu de les quals és la facilitat de desplegament de petits fragments de codi en determinats llenguatges de programació per realitzar tasques específiques en resposta a esdeveniments. Aquestes funcions són executades als servidors del proveïdor Cloud sense que els usuaris es preocupen del seu manteniment ni de la gestió de la seva elasticitat, mantenint sempre un model de pagament per ús de gra fi. Les plataformes FaaS pertanyen al paradigma informàtic conegut com a Serverless, el propòsit del qual és abstraure la gestió de servidors per part dels usuaris, permetent centrar els seus esforços únicament en el desenvolupament d'aplicacions. El problema del model FaaS és que està enfocat principalment a microserveis i tendeix a tenir limitacions en el temps d'execució i en les capacitats de computació (per exemple, no té suport per a maquinari d'acceleració com GPU). Tot i això, s'ha demostrat que la capacitat d'autoaprovisionament i l'alt grau de paral·lelisme d'aquests serveis poden ser molt adequats per a més aplicacions. A més, la seva inherent execució dirigida per esdeveniments fa que les funcions siguen perfectament adequades per ser definides com a passos en fluxos de treball de processament d'arxius (per exemple, fluxos de treball de computació científica). D'altra banda, l'auge dels dispositius intel·ligents i integrats (IoT), les innovacions a les xarxes de comunicació i la necessitat de reduir la latència en casos d'ús complexos han donat lloc al concepte d'Edge computing, o computació a la vora. L'Edge computing consisteix en el processament en dispositius propers a les fonts de dades per millorar els temps de resposta. La combinació d'aquest paradigma amb la computació en núvol, formant arquitectures amb dispositius a diferents nivells en funció de la proximitat a la font i la capacitat de còmput, s'ha encunyat com a continu de la computació al núvol (o continu computacional). Aquesta tesi doctoral pretén, doncs, aplicar diferents estratègies Serverless per permetre el desplegament d'aplicacions generalistes, empaquetades en contenidors de programari, a través dels diferents nivells del continu computacional. Per això, s'han desenvolupat múltiples eines per tal de: i) adaptar serveis FaaS de proveïdors Cloud públics; ii) integrar diferents components de programari per definir una plataforma Serverless en infraestructures privades i a la vora; iii) aprofitar dispositius d'acceleració a plataformes Serverless; i iv) facilitar el desplegament d'aplicacions i fluxos de treball mitjançant interfícies d'usuari. A més, s'han creat i s'han adaptat diversos casos d'ús per avaluar els desenvolupaments aconseguits.[EN] In recent years, the popularity of Cloud computing has allowed users to access unprecedented compute, network, and storage resources under a pay-per-use model. This popularity led to new services to solve specific large-scale computing challenges and simplify the development and deployment of applications. Among the most prominent services in recent years are FaaS (Function as a Service) platforms, whose primary appeal is the ease of deploying small pieces of code in certain programming languages to perform specific tasks on an event-driven basis. These functions are executed on the Cloud provider's servers without users worrying about their maintenance or elasticity management, always keeping a fine-grained pay-per-use model. FaaS platforms belong to the computing paradigm known as Serverless, which aims to abstract the management of servers from the users, allowing them to focus their efforts solely on the development of applications. The problem with FaaS is that it focuses on microservices and tends to have limitations regarding the execution time and the computing capabilities (e.g. lack of support for acceleration hardware such as GPUs). However, it has been demonstrated that the self-provisioning capability and high degree of parallelism of these services can be well suited to broader applications. In addition, their inherent event-driven triggering makes functions perfectly suitable to be defined as steps in file processing workflows (e.g. scientific computing workflows). Furthermore, the rise of smart and embedded devices (IoT), innovations in communication networks and the need to reduce latency in challenging use cases have led to the concept of Edge computing. Edge computing consists of conducting the processing on devices close to the data sources to improve response times. The coupling of this paradigm together with Cloud computing, involving architectures with devices at different levels depending on their proximity to the source and their compute capability, has been coined as Cloud Computing Continuum (or Computing Continuum). Therefore, this PhD thesis aims to apply different Serverless strategies to enable the deployment of generalist applications, packaged in software containers, across the different tiers of the Cloud Computing Continuum. To this end, multiple tools have been developed in order to: i) adapt FaaS services from public Cloud providers; ii) integrate different software components to define a Serverless platform on on-premises and Edge infrastructures; iii) leverage acceleration devices on Serverless platforms; and iv) facilitate the deployment of applications and workflows through user interfaces. Additionally, several use cases have been created and adapted to assess the developments achieved.Risco Gallardo, S. (2023). Serverless Strategies and Tools in the Cloud Computing Continuum [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202013Compendi

    Generate fuzzy string-matching to build self attention on Indonesian medical-chatbot

    Get PDF
    Chatbot is a form of interactive conversation that requires quick and precise answers. The process of identifying answers to users’ questions involves string matching and handling incorrect spelling. Therefore, a system that can independently predict and correct letters is highly necessary. The approach used to address this issue is to enhance the fuzzy string-matching method by incorporating several features for self-attention. The combination of fuzzy string-matching methods employed includes Jaro Winkler distance + Levenshtein Damerau distance and Damerau Levenshtein + Rabin Carp. The reason for using this combination is their ability not only to match strings but also to correct word typing errors. This research contributes by developing a self-attention mechanism through a modified fuzzy string-matching model with enhanced word feature structures. The goal is to utilize this self-attention mechanism in constructing the Indonesian medical bidirectional encoder representations from transformers (IM-BERT). This will serve as a foundation for additional features to provide accurate answers in the Indonesian medical question and answer system, achieving an exact match of 85.7% and an F1-score of 87.6%

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Machine Unlearning: A Survey

    Full text link
    Machine learning has attracted widespread attention and evolved into an enabling technology for a wide range of highly successful applications, such as intelligent computer vision, speech recognition, medical diagnosis, and more. Yet a special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning. This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality. At the same time, this ambitious problem has led to numerous research efforts aimed at confronting its challenges. To the best of our knowledge, no study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios. Accordingly, with this survey, we aim to capture the key concepts of unlearning techniques. The existing solutions are classified and summarized based on their characteristics within an up-to-date and comprehensive review of each category's advantages and limitations. The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities

    ACiS: smart switches with application-level acceleration

    Full text link
    Network performance has contributed fundamentally to the growth of supercomputing over the past decades. In parallel, High Performance Computing (HPC) peak performance has depended, first, on ever faster/denser CPUs, and then, just on increasing density alone. As operating frequency, and now feature size, have levelled off, two new approaches are becoming central to achieving higher net performance: configurability and integration. Configurability enables hardware to map to the application, as well as vice versa. Integration enables system components that have generally been single function-e.g., a network to transport data—to have additional functionality, e.g., also to operate on that data. More generally, integration enables compute-everywhere: not just in CPU and accelerator, but also in network and, more specifically, the communication switches. In this thesis, we propose four novel methods of enhancing HPC performance through Advanced Computing in the Switch (ACiS). More specifically, we propose various flexible and application-aware accelerators that can be embedded into or attached to existing communication switches to improve the performance and scalability of HPC and Machine Learning (ML) applications. We follow a modular design discipline through introducing composable plugins to successively add ACiS capabilities. In the first work, we propose an inline accelerator to communication switches for user-definable collective operations. MPI collective operations can often be performance killers in HPC applications; we seek to solve this bottleneck by offloading them to reconfigurable hardware within the switch itself. We also introduce a novel mechanism that enables the hardware to support MPI communicators of arbitrary shape and that is scalable to very large systems. In the second work, we propose a look-aside accelerator for communication switches that is capable of processing packets at line-rate. Functions requiring loops and states are addressed in this method. The proposed in-switch accelerator is based on a RISC-V compatible Coarse Grained Reconfigurable Arrays (CGRAs). To facilitate usability, we have developed a framework to compile user-provided C/C++ codes to appropriate back-end instructions for configuring the accelerator. In the third work, we extend ACiS to support fused collectives and the combining of collectives with map operations. We observe that there is an opportunity of fusing communication (collectives) with computation. Since the computation can vary for different applications, ACiS support should be programmable in this method. In the fourth work, we propose that switches with ACiS support can control and manage the execution of applications, i.e., that the switch be an active device with decision-making capabilities. Switches have a central view of the network; they can collect telemetry information and monitor application behavior and then use this information for control, decision-making, and coordination of nodes. We evaluate the feasibility of ACiS through extensive RTL-based simulation as well as deployment in an open-access cloud infrastructure. Using this simulation framework, when considering a Graph Convolutional Network (GCN) application as a case study, a speedup of on average 3.4x across five real-world datasets is achieved on 24 nodes compared to a CPU cluster without ACiS capabilities

    Digital agriculture: research, development and innovation in production chains.

    Get PDF
    Digital transformation in the field towards sustainable and smart agriculture. Digital agriculture: definitions and technologies. Agroenvironmental modeling and the digital transformation of agriculture. Geotechnologies in digital agriculture. Scientific computing in agriculture. Computer vision applied to agriculture. Technologies developed in precision agriculture. Information engineering: contributions to digital agriculture. DIPN: a dictionary of the internal proteins nanoenvironments and their potential for transformation into agricultural assets. Applications of bioinformatics in agriculture. Genomics applied to climate change: biotechnology for digital agriculture. Innovation ecosystem in agriculture: Embrapa?s evolution and contributions. The law related to the digitization of agriculture. Innovating communication in the age of digital agriculture. Driving forces for Brazilian agriculture in the next decade: implications for digital agriculture. Challenges, trends and opportunities in digital agriculture in Brazil

    Tools for Quantifying Bacterial Motility Using Digital Holographic Microscopy as Applied to Studying the Simulated Microgravity Environment

    Get PDF
    Digital holographic microcopy (DHM) is a label-free technique that has gained attention in recent years as a tool for volumetric imaging. One application of DHM is for the study of microbial motility with the advantage being that organisms may freely move within their environment. Images created from DHM are in the form of holograms. Holograms are time recordings showing XY information with the Z information contained within. Z information can be retrieved from the holograms directly through a variety of numerical techniques or through reconstruction. Datasets generated from DHM are large and processing remains a challenging task. Here, we show how following reconstruction, the refocusing method can be used to locate particles manually through Z. We note the difference between the lateral and axial resolutions and show the impact of the point-spread functions on resolving data. We show that 2D tracking of organisms is generally sufficient for quantifying motility though specific applications such as surface behavior still require 3D information. With this understanding, we shift to studying the microgravity environment. The microgravity environment is the weightless environment of the space station. It is difficult to conduct experiments on the space station, so we simulate certain characteristics of that environment on Earth by using simulated microgravity devices. We review bacterial responses to microgravity and the simulated microgravity environment with an emphasis on motility and chemotaxis. Finally, we apply the techniques developed in this thesis to study the simulated microgravity environment by examining the motility and chemotaxis of Vibrio alginolyticus. We show that while there was little change in motility between simulated microgravity and normal gravity, there is a statistically significant difference in cloud sizes. Future work would involve comparing these responses with the actual microgravity environment

    Undergraduate and Graduate Course Descriptions, 2023 Spring

    Get PDF
    Wright State University undergraduate and graduate course descriptions from Spring 2023

    Digital agriculture: research, development and innovation in production chains.

    Get PDF
    Digital transformation in the field towards sustainable and smart agriculture. Digital agriculture: definitions and technologies. Agroenvironmental modeling and the digital transformation of agriculture. Geotechnologies in digital agriculture. Scientific computing in agriculture. Computer vision applied to agriculture. Technologies developed in precision agriculture. Information engineering: contributions to digital agriculture. DIPN: a dictionary of the internal proteins nanoenvironments and their potential for transformation into agricultural assets. Applications of bioinformatics in agriculture. Genomics applied to climate change: biotechnology for digital agriculture. Innovation ecosystem in agriculture: Embrapa?s evolution and contributions. The law related to the digitization of agriculture. Innovating communication in the age of digital agriculture. Driving forces for Brazilian agriculture in the next decade: implications for digital agriculture. Challenges, trends and opportunities in digital agriculture in Brazil.Translated by Beverly Victoria Young and Karl Stephan Mokross

    Framing Apache Spark in life sciences

    Get PDF
    Advances in high-throughput and digital technologies have required the adoption of big data for handling complex tasks in life sciences. However, the drift to big data led researchers to face technical and infrastructural challenges for storing, sharing, and analysing them. In fact, this kind of tasks requires distributed computing systems and algorithms able to ensure efficient processing. Cutting edge distributed programming frameworks allow to implement flexible algorithms able to adapt the computation to the data over on-premise HPC clusters or cloud architectures. In this context, Apache Spark is a very powerful HPC engine for large-scale data processing on clusters. Also thanks to specialised libraries for working with structured and relational data, it allows to support machine learning, graph-based computation, and stream processing. This review article is aimed at helping life sciences researchers to ascertain the features of Apache Spark and to assess whether it can be successfully used in their research activities
    corecore