4 research outputs found

    Perfectly secure data aggregation via shifted projections

    Full text link
    We study a general scenario where confidential information is distributed among a group of agents who wish to share it in such a way that the data becomes common knowledge among them but an eavesdropper intercepting their communications would be unable to obtain any of said data. The information is modelled as a deck of cards dealt among the agents, so that after the information is exchanged, all of the communicating agents must know the entire deal, but the eavesdropper must remain ignorant about who holds each card. Valentin Goranko and the author previously set up this scenario as the secure aggregation of distributed information problem and constructed weakly safe protocols, where given any card cc, the eavesdropper does not know with certainty which agent holds cc. Here we present a perfectly safe protocol, which does not alter the eavesdropper's perceived probability that any given agent holds cc. In our protocol, one of the communicating agents holds a larger portion of the cards than the rest, but we show how for infinitely many values of aa, the number of cards may be chosen so that each of the mm agents holds more than aa cards and less than 2m2a2m^2a

    A case study in almost-perfect security for unconditionally secure communication

    No full text
    In the Russian cards problem, Alice, Bob and Cath draw a, b and c cards, respectively, from a publicly known deck. Alice and Bob must then communicate their cards to each other without Cath learning who holds a single card. Solutions in the literature provide weak security, where Alice and Bob's exchanges do not allow Cath to know with certainty who holds each card that is not hers, or perfect security, where Cath learns no probabilistic information about who holds any given card. We propose an intermediate notion, which we call -strong security, where the probabilities perceived by Cath may only change by a factor of . We then show that strategies based on affine or projective geometries yield -strong safety for arbitrarily small and appropriately chosen values of a, b, c

    New Directions in Model Checking Dynamic Epistemic Logic

    Get PDF
    Dynamic Epistemic Logic (DEL) can model complex information scenarios in a way that appeals to logicians. However, its existing implementations are based on explicit model checking which can only deal with small models, so we do not know how DEL performs for larger and real-world problems. For temporal logics, in contrast, symbolic model checking has been developed and successfully applied, for example in protocol and hardware verification. Symbolic model checkers for temporal logics are very efficient and can deal with very large models. In this thesis we build a bridge: new faithful representations of DEL models as so-called knowledge and belief structures that allow for symbolic model checking. For complex epistemic and factual change we introduce transformers, a symbolic replacement for action models. Besides a detailed explanation of the theory, we present SMCDEL: a Haskell implementation of symbolic model checking for DEL using Binary Decision Diagrams. Our new methods can solve well-known benchmark problems in epistemic scenarios much faster than existing methods for DEL. We also compare its performance to to existing model checkers for temporal logics and show that DEL can compete with established frameworks. We zoom in on two specific variants of DEL for concrete applications. First, we introduce Public Inspection Logic, a new framework for the knowledge of variables and its dynamics. Second, we study the dynamic gossip problem and how it can be analyzed with epistemic logic. We show that existing gossip protocols can be improved, but that no perfect strengthening of "Learn New Secrets" exists
    corecore