7,121 research outputs found

    On the Efficacy of Live DDoS Detection with Hadoop

    Full text link
    Distributed Denial of Service flooding attacks are one of the biggest challenges to the availability of online services today. These DDoS attacks overwhelm the victim with huge volume of traffic and render it incapable of performing normal communication or crashes it completely. If there are delays in detecting the flooding attacks, nothing much can be done except to manually disconnect the victim and fix the problem. With the rapid increase of DDoS volume and frequency, the current DDoS detection technologies are challenged to deal with huge attack volume in reasonable and affordable response time. In this paper, we propose HADEC, a Hadoop based Live DDoS Detection framework to tackle efficient analysis of flooding attacks by harnessing MapReduce and HDFS. We implemented a counter-based DDoS detection algorithm for four major flooding attacks (TCP-SYN, HTTP GET, UDP and ICMP) in MapReduce, consisting of map and reduce functions. We deployed a testbed to evaluate the performance of HADEC framework for live DDoS detection. Based on the experiments we showed that HADEC is capable of processing and detecting DDoS attacks in affordable time

    Controlling Network Latency in Mixed Hadoop Clusters: Do We Need Active Queue Management?

    Get PDF
    With the advent of big data, data center applications are processing vast amounts of unstructured and semi-structured data, in parallel on large clusters, across hundreds to thousands of nodes. The highest performance for these batch big data workloads is achieved using expensive network equipment with large buffers, which accommodate bursts in network traffic and allocate bandwidth fairly even when the network is congested. Throughput-sensitive big data applications are, however, often executed in the same data center as latency-sensitive workloads. For both workloads to be supported well, the network must provide both maximum throughput and low latency. Progress has been made in this direction, as modern network switches support Active Queue Management (AQM) and Explicit Congestion Notifications (ECN), both mechanisms to control the level of queue occupancy, reducing the total network latency. This paper is the first study of the effect of Active Queue Management on both throughput and latency, in the context of Hadoop and the MapReduce programming model. We give a quantitative comparison of four different approaches for controlling buffer occupancy and latency: RED and CoDel, both standalone and also combined with ECN and DCTCP network protocol, and identify the AQM configurations that maintain Hadoop execution time gains from larger buffers within 5%, while reducing network packet latency caused by bufferbloat by up to 85%. Finally, we provide recommendations to administrators of Hadoop clusters as to how to improve latency without degrading the throughput of batch big data workloads.The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7/2007–2013) under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain under the contracts TIN2012-34557 and TIN2015-65316-P, Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), HiPEAC-3 Network of Excellence (ICT- 287759), and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft
    • …
    corecore