21,703 research outputs found

    A Central Limit Theorem for Gibbsian Invariant Measures of 2D Euler Equations

    Full text link
    We consider Canonical Gibbsian ensembles of Euler point vortices on the 2-dimensional torus or in a bounded domain of R 2 . We prove that under the Central Limit scaling of vortices intensities, and provided that the system has zero global space average in the bounded domain case (neutrality condition), the ensemble converges to the so-called Energy-Enstrophy Gaussian random distributions. This can be interpreted as describing Gaussian fluctuations around the mean field limit of vortices ensembles. The main argument consists in proving convergence of partition functions of vortices and Gaussian distributions.Comment: 27 pages, to appear on Communications in Mathematical Physic

    Dimers and cluster integrable systems

    Get PDF
    We show that the dimer model on a bipartite graph on a torus gives rise to a quantum integrable system of special type - a cluster integrable system. The phase space of the classical system contains, as an open dense subset, the moduli space of line bundles with connections on the graph. The sum of Hamiltonians is essentially the partition function of the dimer model. Any graph on a torus gives rise to a bipartite graph on the torus. We show that the phase space of the latter has a Lagrangian subvariety. We identify it with the space parametrizing resistor networks on the original graph.We construct several discrete quantum integrable systems.Comment: This is an updated version, 75 pages, which will appear in Ann. Sci. EN

    Quantizing non-Lagrangian gauge theories: an augmentation method

    Get PDF
    We discuss a recently proposed method of quantizing general non-Lagrangian gauge theories. The method can be implemented in many different ways, in particular, it can employ a conversion procedure that turns an original non-Lagrangian field theory in dd dimensions into an equivalent Lagrangian topological field theory in d+1d+1 dimensions. The method involves, besides the classical equations of motion, one more geometric ingredient called the Lagrange anchor. Different Lagrange anchors result in different quantizations of one and the same classical theory. Given the classical equations of motion and Lagrange anchor as input data, a new procedure, called the augmentation, is proposed to quantize non-Lagrangian dynamics. Within the augmentation procedure, the originally non-Lagrangian theory is absorbed by a wider Lagrangian theory on the same space-time manifold. The augmented theory is not generally equivalent to the original one as it has more physical degrees of freedom than the original theory. However, the extra degrees of freedom are factorized out in a certain regular way both at classical and quantum levels. The general techniques are exemplified by quantizing two non-Lagrangian models of physical interest.Comment: 46 pages, minor correction
    • …
    corecore