151 research outputs found

    Precedence-Constrained Arborescences

    Full text link
    The minimum-cost arborescence problem is a well-studied problem in the area of graph theory, with known polynomial-time algorithms for solving it. Previous literature introduced new variations on the original problem with different objective function and/or constraints. Recently, the Precedence-Constrained Minimum-Cost Arborescence problem was proposed, in which precedence constraints are enforced on pairs of vertices. These constraints prevent the formation of directed paths that violate precedence relationships along the tree. We show that this problem is NP-hard, and we introduce a new scalable mixed integer linear programming model for it. With respect to the previous models, the newly proposed model performs substantially better. This work also introduces a new variation on the minimum-cost arborescence problem with precedence constraints. We show that this new variation is also NP-hard, and we propose several mixed integer linear programming models for formulating the problem

    On the vehicle routing problem with time windows

    Get PDF

    A dual ascent framework for Lagrangean decomposition of combinatorial problems

    Get PDF
    We propose a general dual ascent framework for Lagrangean decomposition of combinatorial problems. Although methods of this type have shown their efficiency for a number of problems, so far there was no general algorithm applicable to multiple problem types. In this work, we propose such a general algorithm. It depends on several parameters, which can be used to optimize its performance in each particular setting. We demonstrate efficacy of our method on graph matching and multicut problems, where it outperforms state-of-the-art solvers including those based on subgradient optimization and off-the-shelf linear programming solvers

    A dual ascent framework for Lagrangean decomposition of combinatorial problems

    Get PDF
    We propose a general dual ascent framework for Lagrangean decomposition of combinatorial problems. Although methods of this type have shown their efficiency for a number of problems, so far there was no general algorithm applicable to multiple problem types. In this work, we propose such a general algorithm. It depends on several parameters, which can be used to optimize its performance in each particular setting. We demonstrate efficacy of our method on graph matching and multicut problems, where it outperforms state-of-the-art solvers including those based on subgradient optimization and off-the-shelf linear programming solvers

    Cooperative task assignment for multiple vehicles

    Get PDF
    • …
    corecore