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Chapter 1

Introduction

THIS thesis studies the task assignment problem for multiple dispersed vehicles
(sometimes also taken as mobile robots) to efficiently visit a set of target lo-

cations in challenging environments posing constraints on vehicles, such as the
winds or currents in a drift field, a limited communication range of the vehicles,
and the precedence constraints that specify which targets need to be visited be-
fore which other targets. For the task assignment of multiple vehicles in a time-
invariant drift field, we first investigate the path planning algorithm for a vehicle
to travel between two prescribed locations in the drift field with the minimum
travel time. Then, we look into the task assignments for the vehicles to visit a set
of target locations in a time-invariant drift field with and without obstacles. For the
task assignment of vehicles with limited communication range, we study the co-
operative strategies for a group of dispersed heterogeneous vehicles to efficiently
visit a set of target locations while having an arbitrary communication network,
which in particular is not required to be connected. For the task assignment of ve-
hicles under precedence constraints, we integrate topological sorting techniques
with assignment algorithms to enable a team of heterogeneous vehicles to quickly
visit a set of target locations respecting every precedence constraint.

1.1 Multi-vehicle task assignment problem

The increasing automation level of human being’s activities both in civil and mil-
itary applications poses higher requirement on the intelligence of the various au-
tonomous vehicles/robots, such as unmanned aerial vehicles (UAVs) [57, 68],
unmanned marine vehicles [11, 63], ground vehicles/robots [8, 76] and sensor
networks [19, 70]. Among these applications, task assignment for one or multi-
ple vehicles has been an important research area due to its high theoretical value
and wide engineering applications, as shown in Fig. 1.1. Generally speaking, task
assignment for vehicles is to properly assign a certain subset of tasks to each indi-
vidual vehicle such that the vehicles can complete the whole mission at a minimal
cost while satisfying every given constraint.

The tasks required to be performed by the vehicles can be discrete, such as
package carrying and delivering, and the patrolling of a set of target locations
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Figure 1.1: (a) Robots are exploring on Mars [18]; (b) The Swarm-bots used for
environmental mapping [35].

of interest, or continuous, such as the persistent surveillance of chosen area. In
particular, the task assignment for one or multiple vehicles to visit a set of target
locations, while minimizing some objective such as the vehicles’ maximum travel
time [72] and total travel distance [81], has wide applications in logistics, terrain
mapping, environmental monitoring, and disaster rescue [4, 12, 72, 81]. The
problem can be taken as a variant of the traveling salesman problem (TSP) or the
vehicle routing problem (VRP), which are both NP-hard [47, 48]. The TSP focuses
on designing one route with the minimum length for a salesman/vehicle to visit a
set of dispersed customers while the VRP aims at employing multiple vehicles to
efficiently deliver products/packages to a set of dispersed customers.

As researchers design, build, and employ cooperative multi-vehicle systems,
they invariably encounter the fundamental question: which vehicle should exe-
cute which task in order to achieve the global goal cooperatively [31]? This ques-
tion must be answered, even for relatively simple multi-vehicle systems, and the
importance of task allocation grows with the complexity, in size and capability, of
the vehicle system under study [15]. From the decision-making standpoint, task
assignment approaches are either centralized (a single control vehicle makes task
allocation decisions for all vehicles) [15, 20] or distributed, yet cooperative (each
vehicle or each small coalition formed by several vehicles decides which tasks to
do themselves) [49, 50]. Centralized implementations are generally more accu-
rate (i.e., yielding high-quality, even optimal solutions) than distributed schemes
and rely on the information gathered by all the vehicles. However, they entail
non-negligible communication overhead, and have poor fault tolerance and scal-
ability properties. In comparison, the distributed approaches do not require such
a powerful central decision-maker with the tradeoff that they make the solution
more complicated. However, distributed control strategies find their growing ap-
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plications in complex networked systems under information constraints, such as
limited sensing range and limited bandwidth in communication [54].

1.2 Multi-vehicle task assignment in challenging en-
vironments

This thesis addresses the coordination of a fleet of dispersed vehicles to efficiently
visit a set of target locations in challenging environments. The motivation of in-
vestigating the multi-vehicle task assignment in challenging environments is dis-
cussed in this section.

Generally speaking, three components require special attention in the frame-
work of the multi-vehicle task assignment problem: environmental factors such as
winds or currents in a drift field affecting the motion dynamics of the vehicles, the
communication network of the vehicles governing the vehicles’ interaction, and
the service demands coming from the target locations requiring how the targets
will be visited. First, the environmental factors such as winds or currents in a
drift field have a direct influence on the motion dynamics of the vehicles, where
different rates of change of the navigation angle of a vehicle generally result in dif-
ferent times for the vehicle to travel through two prescribed locations. Second, the
communication network of the initially dispersed vehicles might not be connected
due to the vehicles’ limited communication range, so the vehicles are subject to
local, and possibly outdated, information. Finally, the service demands such as the
sequence priorities on visiting the target locations have a great influence on how
to construct the vehicles’ paths to visit all the target locations. In particular, this
thesis studies the multi-vehicle task assignment in challenging environments from
the three aspects listed below.

1.2.1 Multi-vehicle task assignment in a drift field

When a vehicle’s motion is affected by external disturbance such as winds or cur-
rents in a drift field, the multi-vehicle task assignment problem consists of two
sub-problems, namely how to optimally navigate a vehicle from one location to a
target location and how to determine the sequences for the vehicles to visit the
target locations. Deeply coupled with the target locations’ assignments, the plan-
ning of the vehicles’ paths between two given locations need to be carried out
before or at the same time when the task assignment is performed because some
off-line designed paths may not be optimal or even not be feasible in the pres-
ence of time-varying or strong time-invariant drift fields [73]. For path planning,
the vehicle’s dynamics need to be taken into account to design robust cooperative
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behavior among multiple vehicles. A properly designed navigation control is nec-
essary to minimize the time for each vehicle to travel between two given locations
in the drift field. The path planning algorithm provides the cost matrix for the
target assignment, and generates routes once the target locations are assigned to
the vehicles. Hence, it is of practical importance to investigate the vehicles’ path
planning in the multi-vehicle task assignment problem.

1.2.2 Multi-vehicle task assignment under limited communica-
tion range

One of the most important factors in decision making for a multi-vehicle system
is the information constraint incurred by a complicated environment especially in
an underwater environment; existing research has considered limited communi-
cation range, bandwidth and time delay [61, 81]. When designing cooperative
strategies for multi-vehicle task assignment, not many existing works have ad-
dressed communication constraints, such as the vehicles’ limited communication
range. The partial knowledge of the surrounding environment caused by the vehi-
cles’ disconnected communication topology and their limited sensing range could
lead to task conflicts between different vehicles, thus resulting in resource waste;
for example, several communication disconnected vehicles may move toward the
same target which could be sufficiently handled by one single vehicle. When the
vehicles’ communication is not perfect as those in [72, 81], the main challenge
in the studied multi-vehicle task assignment problem is to design what informa-
tion should be carried by each vehicle, what information carried by each vehicle
should be communicated to its directly communication-connected (CC) vehicles
through local communication, how to merge the received local, possibly outdated,
information, and how to coordinate the vehicles in each CC vehicle subgroup to
guarantee that the overall tasks will be completed.

1.2.3 Precedence-constrained multi-vehicle task assignment

In recent years, parcel delivery to customers/targets is facing new challenges as
e-commerce has grown vastly [58] where the benefit of using micro drones as
additional support for package delivery has been identified [27]. Consequently,
some leading retailers or distributors such as Amazon and DHL have planned to
employ micro drones for small package deliveries. However, micro drones are
subject to short operation range and small payload capacity which greatly restrict
their efficiency to function in an autonomous delivery network [53]. To overcome
the limitations, some investigation has been done to consider a heterogeneous
team consisting of one carrier truck and one micro drone with complementary
capabilities [53, 60, 69, 77]. For logistic scheduling, another challenge is that
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some customers/targets can have priority over the others to be served due to their
urgency or importance. In these cases, the precedence constraints on the visiting
sequence of customers have to be respected, and the positioning of one customer
in the sequence is directly affected by the customers which are required to be
served earlier. Thus, we investigate the precedence-constrained task assignment
problem for a truck and a micro drone to deliver packages to a set of dispersed
customers subject to the sequence priorities on visiting the target locations.

1.3 Outline and main contributions of this thesis

This thesis is divided into three main parts in which the multi-vehicle task assign-
ment problem in challenging environments is investigated subject to constraints,
from respectively the environment, the vehicles and the targets/customers.

In Chapter 2, we study the multi-vehicle task assignment problem where sev-
eral dispersed vehicles need to visit a set of target locations in a time-invariant
drift field while trying to minimize the vehicles’ total travel time. It is assumed
that the amplitude of the vehicles’ velocity is greater than that of the currents in
the drift field for all locations, which makes it possible for the vehicles to reach
every target location. A path planning algorithm is first designed, which leads
to the minimum time for a vehicle to travel between two prescribed locations in
the drift field. Then, several clustering-based task assignment algorithms are pro-
posed, where two of the algorithms guarantee that all the target locations will be
visited within a computable maximal travel time. This maximal time is at most
twice of the optimal when the travel cost matrix is symmetric.

In Chapter 3, as a follow-up of Chapter 2, we investigate the multi-vehicle task
assignment problem where a fleet of dispersed vehicles is used to visit a set of
target locations in a time-invariant drift field with obstacles. The vehicles have
different capabilities, and each kind of vehicles needs to visit a certain type of
target locations; each target location might have the demand to be visited more
than once by different kinds of vehicles. The objective is to visit all the target
locations while minimizing the vehicles’ total travel time. A path planning method
has been designed to enable the vehicles to move between two prescribed locations
in a drift field with minimal time while avoiding obstacles. We show that this task
assignment problem is NP-hard, and propose an auction-based distributed task
assignment algorithm to assign the target locations to the vehicles using only local
communication.

In Chapter 4, we look into the task assignment for heterogeneous vehicles un-
der limited communication range, where each vehicle initially has the position
information of all the targets and of those vehicles that are within its limited com-
munication range, and each target demands a vehicle with some specified capa-



6 1. Introduction

bility to visit it. A decentralized auction algorithm is proposed, which guarantees
that all the target locations are visited in a finite time irrespective of the vehicles’
communication range, and the vehicles’ total travel distance is within twice of the
optimal when the vehicles are initially communication-connected. We illustrate
that a longer communication range of the vehicles does not necessarily lead to a
better performance of the algorithm, which can also be the case for other decen-
tralized algorithms due to the lack of global information.

In Chapter 5, we study the precedence-constrained task assignment for a team
of heterogeneous vehicles to deliver packages to a set of dispersed customers sub-
ject to precedence constraints that specify which customers need to be visited
before which other customers. A truck and a micro drone with complementary ca-
pabilities are employed where the truck is restricted to travel in a street network
and the micro drone, restricted by its loading capacity and operation range, can
fly from the truck to perform the last mile package deliveries. The objective is to
minimize the time to serve all the customers while respecting every precedence
constraint. This task assignment problem is shown to be NP-hard, and a lower
bound on the optimal time to serve all the customers is constructed by using tools
from graph theory. We design several task assignment algorithms integrated with
a topology sorting technique, which show the superior performances compared
with popular genetic algorithms.

We conclude the thesis and provide discussions for possible future work in
Chapter 6.
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1.5 Preliminaries

We present some basics on algebraic graph theory and several definitions, which
will be used in the subsequent chapters.

1.5.1 Graph theory

This section introduces some useful notations from graph theory, and more details
can be found in [10].

A graph G = (V, E) consists of a set of vertices V, and a set of edges E . A directed
graph, or a digraph for short, is a graph where each edge in E is denoted by
an ordered pair of vertices. Let (i, j), i, j ∈ V, denote an edge which starts at
vertex i and ends at vertex j. In this thesis, we will only consider simple graphs,
i.e. graphs that do not contain self-loops (i, i), ∀i ∈ V. A graph G is undirected if
(i, j) ∈ E ⇔ (j, i) ∈ E for each pair of i, j ∈ V. It is straightforward that undirected
graphs can be treated as special directed graphs.

A walk W in a graph is an alternative sequence of vertices and edges, say
v0, e1, v1, e2, . . . , en, vn, where ei = (vi−1, vi), 0 < i 6 n. The walk from v0 to vn
is denoted by v0v1 . . . vn. This walk is called a trail if all the edges are distinct. A
trail whose endvertices coincide (a closed trail) is a circuit. A circuit in a graph G
containing all the edges is said to be an Euler circuit of G, and a graph is Eulerian
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if it has an Euler circuit. Note that a path is a walk with distinct vertices. If a walk
W = v0v1 . . . vn is such that n > 3, v0 = vn, and the vertices vi, 0 6 i < n, are
distinct from each other, then W is said to be a cycle. A graph is acyclic if it does
not contain any cycles. A graph is connected if there is a path from i to j for each
pair of i, j ∈ V. A graph G is a tree if it is acyclic and connected. A Hamiltonian
path in a graph is a path containing every vertex of the graph, and a Hamiltonian
cycle is a cycle containing every vertex of the graph. If we consider weights on the
edges of a graph, the weighted graph can be described by G = (V, E ,W) with the
vertex set V, the edge set E , and the map W : E → R defines the weight for each
edge in E . Such weights might represent, for example, lengths, costs or utilities,
etc.

1.5.2 Related definitions

We first introduce the definition of the arborescence of a digraph.

Definition 1. (Arborescence [34]) An arborescence is a digraph with a single root in
which, there is exactly one directed path from the root to every other vertex.

Based on Definition 1, we extend the concept of arborescence with a single
root to a general one with several roots.

Definition 2. (Generalized arborescence) A generalized arborescence is a digraph
with several roots in which, there is exactly one directed path from one and only one
of all the roots to every non-root vertex.



Chapter 2

Multi-vehicle task assignment in a
time-invariant drift field

THIS chapter studies the multi-vehicle task assignment problem where several
dispersed vehicles need to visit a set of target locations in a time-invariant

drift field while trying to minimize the vehicles’ total travel time. Using optimal
control theory, we first design a path planning algorithm to minimize the time
for each vehicle to travel between two given locations in the drift field. The path
planning algorithm provides the cost matrix for the target assignment, and gener-
ates routes once the target locations are assigned to a vehicle. Then, we propose
several clustering strategies to assign the targets, and we use two metrics to deter-
mine the visiting sequence of the targets clustered to each vehicle. Mainly used to
specify the minimum time for a vehicle to travel between any two target locations,
the cost matrix is obtained using the path planning algorithm, and is in general
asymmetric due to time-invariant currents of the drift field. Let the weight of a
directed edge between two vertices be the minimum travel time between them re-
specting the orientation. We show that one of the clustering strategies can obtain
a min-cost arborescence of the asymmetric target-vehicle graph where the sum
of all the edge weights of the arborescence is minimum. Using tools from graph
theory, a lower bound on the optimal solution is found, which can be used to mea-
sure the proximity of a solution from the optimal. Furthermore, by integrating
the target clustering strategies with the target visiting metrics, we obtain several
task assignment algorithms. Among them, two algorithms guarantee that all the
target locations will be visited within a computable maximal travel time, which is
at most twice of the optimal when the cost matrix is symmetric. Finally, numerical
simulations show that the algorithms can quickly lead to a solution that is close to
the optimal.

2.1 Introduction

When a vehicle’s motion is affected by external disturbance such as winds or cur-
rents in a drift field, the multi-vehicle task assignment problem consists of two
sub-problems, namely how to assign subtasks as sequences of target locations to
individual vehicles and how to navigate a vehicle from its initial location to a tar-
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get location optimally. There are some research works considering both the target
assignment and path planning for the employed vehicles [23, 37, 84]. By simply
requiring moving in straight lines between prescribed locations, Han and Chung
[37] employed an autonomous underwater vehicle (AUV) to optimally visit several
target points considering the ocean currents and obstacles. Furthermore, to enable
multiple AUVs to visit several target points in the time-varying (in a discrete time
scale) 3-D underwater environment, Zhu et al. [84] employed the velocity synthe-
sis approach to enable each AUV to reach its targets along the shortest path and
used the self-organizing map neural network to realize the multi-AUV target point
assignment. Grid-modeling based graph methods were designed by Eichhorn [23]
for vehicle path planning in a time-varying environment. Delmerico et al. [16]
used active aerial exploration for robot path planning through an unknown ter-
rain for search and rescue missions. The path planning methods minimizing the
travel distance between two given locations in [37, 84] do not necessarily lead to
the minimal travel time between the locations. More importantly, since the met-
ric matrix representing the minimal travel time between the target locations is in
general asymmetric, the existing algorithms, e.g. the Prim algorithm [43], may
fail to guarantee their performances.

In our work [80], the multi-AUV routing problem was studied in temporally
piecewise constant ocean currents aiming at minimizing the vehicles’ total travel
time. In addition, time-optimal coverage control of multiple vehicles in a drift field
was studied in [85] where the time-optimal paths were generated over a sequence
of discrete time instants. In this chapter, we investigate the task assignment prob-
lem for which several dispersed vehicles need to visit a set of target locations in
a time-invariant drift field while trying to minimize the vehicles’ total travel time.
To solve the problem, we first design a path planning method to deal with the ve-
hicle path planning in currents. Then, we propose several clustering strategies to
assign the target locations to the vehicles, and we use two metrics to put the target
locations assigned to each vehicle in an ordered sequence. Our main contributions
are as follows. Firstly, based on the accessible area analysis and optimal control
theory, the proposed planning algorithm can generate the time-optimal path for a
vehicle to travel between two prescribed locations in a drift field, which provides
the travel cost matrix to be used later for the task assignment. Secondly, a lower
bound on the optimality of the solution to the task assignment problem with the
asymmetric travel cost matrix is achieved using one of the proposed clustering
strategies. As the task assignment problem is NP-hard [41, 43], the lower bound
can be used to approximately measure the quality of a solution. Lastly, we have
studied how the asymmetric travel cost matrix caused by the drift field influences
the performances of different clustering algorithms. Two novel algorithms, in the
form of integrating the clustering strategies with the target-inserting metrics, guar-
antee that the vehicles’ total travel time to visit all the target locations is within a
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reasonable computable upper bound, which, when the cost matrix is symmetric,
is twice of the optimal.

The rest of this chapter is organized as follows. In Section 2.2, the formulation
of the task assignment problem is given. Section 2.3 presents the path planning
algorithm which generates the optimal navigation control law, and in Section 2.4

several target clustering strategies and two target inserting metrics are discussed.
We present the simulation results in Section 2.5 and conclude the chapter in Sec-
tion 2.6.

2.2 Problem formulation

Consider a fleet of m homogeneous vehicles initially randomly distributed in a
planar time-invariant drift field. They need to visit n target locations while trying
to minimize their total travel time. The vehicles are not required to return to their
initial locations after visiting the targets (namely we are considering a variation
of the open vehicle routing problem [26]), and their net speed is affected by the
speed of the currents in the drift field.

2.2.1 Formulation as an optimization problem

We use the vector v⃗c = [vcx, vcy]
T to describe the drift velocity of the time-invariant

field with respect to some coordinate system fixed to the ground. Note that v⃗c
changes with locations. We assume that the vehicles are driven by constant thrust,
and consequently their velocity v⃗ is with constant speed v relative to the field
[71, 73]. Since the dimension of the drift field is significantly larger than the
vehicles’ size, we assume that the vehicles are free of turning ratio constraints.
The kinematics of each vehicle are

ẋ = v cosψ + vcx, ẏ = v sinψ + vcy, (2.1)

where [x, y]T is the vehicle’s position and ψ is the vehicle’s navigation angle.
We label the target locations by 1, . . . , n, and let T = {1, . . . , n} be the set of

these indices. Let R denote the set of indices of all the vehicles’ initial locations,
namely R = {n+ 1, · · · , n+m}, m 6 n. For each pair of distinct i, j ∈ T ∪ R, let
t(i, j) denote the minimal time for a vehicle to travel from i to j using a properly
designed navigation control. Let σij be the path-planning mapping that maps the
indices i ∈ T ∪ R and j ∈ T of the starting and ending locations of a vehicle to
a binary value, which equals one if and only if it is planned that there exists a
vehicle travels from location i to j. So σii = 0 for all i ∈ T ∪R. Then, the problem
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is to minimize the vehicles’ total travel time for visiting all the target locations

f =
∑

i∈R∪T ,j∈T
t(i, j)σij , (2.2)

subject to ∑
i∈R∪T

σij = 1, ∀ j ∈ T ; (2.3)∑
j∈T

σij 6 1, ∀ i ∈ T ∪R; (2.4)

∑
i,j∈S

σij 6 |S| − 1, ∀ S ⊆ T , |S| > 2. (2.5)

Constraint (2.3) ensures that each target location is visited once and only once;
(2.4) ensures that each target’s and vehicle’s initial location is departed at most
once; and (2.5) guarantees that there is no subtour among the target locations.

Remark 2.1. If ignoring the effect of the field currents on the speed of the vehicles,
the task assignment problem just presented reduces to the uncapacitated multi-depot
open vehicle routing problem with the symmetric travel cost matrix [45]. We refer
the interested reader to [45] for detailed discussions on the relationship between a
standard vehicle routing problem and the multi-depot open vehicle routing problem.

After formulating the task assignment problem as a constrained minimization
problem, we present in the following section a component of the path planning
that is critical for solving the overall optimization problem.

2.3 Path planning algorithm given the starting and
target locations

To plan the optimal path that minimizes the time for a vehicle to travel through
two prescribed locations in a given field with currents, we first look at the acces-
sible region of a vehicle starting from an arbitrary location. Then using optimal
control theory, we construct the navigation rule that guides a vehicle to travel
between two given locations following the path using the minimum time.

2.3.1 Accessible region analysis

As before, v⃗c is used to denote the velocity of the currents, which changes with
location; its amplitude is vc. As in (2.1), the vehicle’s velocity relative to the field
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is v⃗ with the amplitude v. Similarly, we use v⃗net to denote the vehicle’s net veloc-
ity with amplitude vnet. Obviously, the vehicle can reach all locations of the field
given enough time if v > vc. For this reason, we make this standing assumption
for the rest of the chapter.

Assumption 2.1. It holds for all locations of the field and all time that v > vc.

Consequently, with this assumption, each vehicle can travel from any given
location to any given other target location and the travel time depends on the
path planned and the associated navigation rule, which will be discussed in the
following subsection.

2.3.2 Optimal navigation law

We now show how to navigate a vehicle between any two given locations of a
time-invariant drift field with the minimum travel time.

Lemma 2.2. Under Assumption 2.1, for a vehicle with kinematics (2.1), to travel
with the minimum time between any given starting and ending locations of the time-
invariant drift field with the current velocity v⃗c, the rate of change of the vehicle’s
optimal navigation angle ψ∗ must satisfy

ψ̇∗ = −∂vcx
∂y

cos2 ψ∗ + (
∂vcx
∂x
− ∂vcy

∂y
) sinψ∗ cosψ∗ +

∂vcy
∂x

sin2 ψ∗. (2.6)

Proof. Let t0 and tf be the vehicle’s starting and finishing times respectively. Then
to minimize the vehicle’s travel time, is to minimize the objective function

J =

∫ tf

t0

dt = tf − t0.

Define the corresponding Hamiltonian to be

H(t, [x, y]T , λ, ψ) = 1 + λT [ẋ, ẏ]T

= 1 + λ1(v cosψ + vcx) + λ2(v sinψ + vcy), (2.7)

where λ = [λ1, λ2]
T is the two-dimensional Lagrangian multiplier. From Pon-

tryagin’s minimum principle of variational analysis in optimal control theory [40,
P188], it must be true that the optimal Lagrangian multiplier λ∗ and the optimal
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navigation angle ψ∗ satisfy

λ̇∗ = − ∂H

∂[x, y]T
, (2.8)

0 =
∂H

∂ψ∗ . (2.9)

Since (2.9) holds for all t > t0, the time derivative of its right-hand side must also
be zero. So we have

λ̇∗1 sinψ
∗ + λ∗1ψ̇

∗ cosψ∗ = λ̇∗2 cosψ
∗ − λ∗2ψ̇∗ sinψ∗.

Combining with what can be obtained from (2.8)

λ̇∗1 = −λ∗1
∂vcx
∂x
− λ∗2

∂vcy
∂x

,

λ̇∗2 = −λ∗1
∂vcx
∂y
− λ∗2

∂vcy
∂y

,

the optimal navigation control ψ∗ must satisfy (2.6) when tf − t0 is minimized.

Because of Assumption 2.1, we know that a solution ψ, and thus the optimal
solution ψ∗, always exist. Lemma 2.2 gives a necessary condition on ψ̇∗; what
remains to be determined is the initial orientation ψ∗(0). After knowing ψ∗(0)

and ψ̇∗, the optimal navigation angle ψ∗(t), t > 0, can be determined through
the integration of ψ̇∗ over t. However, to determine ψ∗(0) with the initial location
[x0, y0]

T and the finishing location [xf , yf ]
T , one needs to solve the two-point

boundary problem:{
xf = x0 +

∫ tf
t0
[v cos(ψ∗(0) +

∫ t

t0
ψ̇∗dτ) + vcx]dt,

yf = y0 +
∫ tf
t0
[v sin(ψ∗(0) +

∫ t

t0
ψ̇∗dτ) + vcy]dt.

(2.10)

The solution ψ∗(0) to (2.10) in general can be found numerically using the shoot-
ing method [59]. As becomes clear later in an example, the structure of the current
velocity [vcx, vcy]

T in the field can be utilized to simplify the computation.
Let i, j and k be three arbitrary different locations. We first give some property

on the optimal travel time matrix of the task assignment problem.

Lemma 2.3. The minimum travel times for a vehicle to travel between two locations
can be asymmetric; the minimum travel times between any three locations i, j and k
satisfy the inequality t(i, k) 6 t(i, j) + t(j, k).

Proof. We first prove that the minimum travel times between two locations are in
general asymmetric. To simplify the proof, we consider the case when the currents
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v⃗c are spatially invariant. Thus, the optimal navigation angle for a vehicle to travel
from i to j is constant according to Lemma 2.2. In other words, the direction of
the net velocity for the vehicle to travel from i to j is directly towards j and
the magnitude of the net velocity is constant, and vice versa. Consequently, the
optimal travel times t(i, j) and t(j, i) are asymmetric as long as the magnitudes of
the two net speeds are different since the travel distances are both the Euclidean
distance between i and j. The magnitudes of the net speeds for a vehicle to travel
from i to j and from j to i are the same only when v⃗c is perpendicular to the vector
pointing from i to j. Thus, the first half of the statement is proved. (Using the
path planning method, we give an example in Fig. 2.1 to show the property of the
asymmetric minimum travel times between two locations.)
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Figure 2.1: Optimal path planning for a vehicle with v = 1 to travel between
two locations in the drift field v⃗c = 10−2[0.3x + 0.2y,−0.2x + 0.3y]T where the
minimum travel times are t(1, 2) = 73.0058s and t(2, 1) = 103.3586s.

Under the optimal navigation law (2.6), a vehicle takes the minimum travel
time t(i, k) to travel from i to k. It is obvious that only if j is located on the
optimal path from i to k, one has t(i, k) = t(i, j) + t(j, k). On the other hand,
t(i, k) would not be the minimum travel time should t(i, k) > t(i, j)+ t(j, k), since
the navigation law shown in Lemma 2.2 is time optimal. The proof is complete.

2.4 Task assignment algorithms

2.4.1 Target clustering strategies

In this subsection, three strategies are presented to cluster the target locations to
the vehicles based on the optimal travel time matrix C = (t(i, j))i∈R∪T ,j∈R∪T
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obtained from the path planning algorithm.

Voronoi clustering

Inspired by the coverage control study where each vehicle can reach any point of
its partitioned area with the shortest travel time among all the vehicles [85], we
first propose the Voronoi clustering strategy assigning each target k to the vehicle
j⋆ such that

j⋆ = argmin
j∈R

t(pj , k), (2.11)

where pj is the index of vehicle j’s initial position and t(pj , k) is the minimum
travel time for vehicle j to visit target k from pj . In the case when a target location
is on one of the boundaries of the Voronoi areas, it is randomly clustered to one of
the vehicles whose Voronoi areas share the boundary.

Extended Voronoi clustering

In the task assignment problem, the vehicles need to visit all the target locations
which is different from the coverage control problem [85] where a vehicle in
essence only visits one target (although its location is unknown beforehand). In
other words, Voronoi clustering might lead to assignment unfairness to the target
locations. Thus, we extend the Voronoi clustering strategy by assigning each tar-
get according to the locations of those targets already assigned and the locations
of all the vehicles.

Let Tj contain the indices of those targets that have already been assigned
to vehicle j, which is initialized as {pj}. The target set T u is used to contain the
indices of those unclustered targets, which is initialized as T . Then, the first target
k⋆ in T u to be clustered and its assigned vehicle j⋆ are determined by

(j⋆, k⋆) = argmin
i∈Tj ,j∈R,k∈T u

t(i, k), (2.12)

where the targets already assigned to the vehicles affect the clustering of the re-
maining targets. After clustering target k⋆, T u is updated to

T u = T u \ {k⋆}, (2.13)

while the targets assigned to vehicle j⋆ are updated to

Tj⋆ = Tj⋆ ∪ {k⋆}. (2.14)
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Marginal-cost-based clustering

In this subsection, a marginal-cost-based clustering strategy is designed which de-
termines the visiting sequence of a target during its clustering process.

Let oj be the route containing the ordered targets already assigned to j, which
is initialized as {pj}. Then, the first target k⋆ in T u to be clustered, its assigned
vehicle j⋆ and the inserting position q⋆ are

(k⋆, j⋆, q⋆) = argmin
k∈T u,j∈R,1<q6|oj |+1

{t(oj ⊕q k)− t(oj)}, (2.15)

where the operation oj ⊕q k inserts target k at the qth position of oj and |oj | is the
length of oj . Target k is inserted to the end of oj if q = |oj |+ 1, and t(oj) denotes
the total travel time for vehicle j to visit all the targets in oj .

2.4.2 Target-visiting metrics

For targets clustered by the Voronoi clustering and extended Voronoi clustering
in §2.4.1, their visiting sequence is not determined. Putting the target locations
assigned to each vehicle into a sequence to minimize the vehicle’s travel time is in
fact the traveling salesman problem (TSP) [3]. In this subsection, we design two
target-visiting metrics: the nearest inserting principle and smallest marginal cost
principle.

Nearest inserting principle

The first metric is the nearest inserting principle where vehicle j always inserts an
unordered target location in Tj with the smallest travel time into the end of its
route. Let oj be the route containing the ordered targets already inserted, which is
initialized as {pj}. The target set T u

j is used to contain the targets in Tj that have
not been inserted into oj . Then, the first target in T u

j to be inserted for vehicle j is

k⋆ = argmin
i=oj(|oj |),k∈T u

j

t(i, k), (2.16)

Then, T u
j and oj are updated as

T u
j = T u

j \ {k⋆}, oj = oj ⊕|oj |+1 k
⋆. (2.17)

The inserting procedure continues until all the targets in Tj are inserted into vehi-
cle j’s target list oj .
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Algorithm 1 The Extended Voronoi clustering for achieving a min-cost generalized
arborescence (MCGA) of a directed graph.
Input: Locations of targets in T and vehicles in R, the travel time matrix C for digraph G.
Output: An MCGA of G.
1: Initialize MCGA←R.
2: while T ̸= ∅ do
3: (j⋆, p⋆)← argmin(j,p)∈MCGA×T t(j, p).
4: Add p⋆ in MCGA and connect it with j⋆ using an edge with weight t(j⋆, p⋆).
5: T ← T \ {p⋆}.
6: end while

Smallest marginal cost principle

The other one is the smallest marginal cost principle, which determines the first
target k⋆ in T u

j to be inserted and its visiting sequence q⋆ for each vehicle j by

(k⋆, q⋆) = argmin
1<q6|oj |+1,k∈T u

j

{t(oj ⊕q k)− t(oj)}. (2.18)

Then, T u
j and oj are updated by

T u
j = T u

j \ {k⋆}, oj = oj ⊕q⋆ k
⋆. (2.19)

The inserting procedure continues until T u
j is empty.

2.4.3 Correctness of the proposed strategies

Let G be a digraph whose vertices contain all the vehicles’ initial positions and
the target locations. The weight for a directed edge is the minimum time for
a vehicle to travel from the starting vertex to the ending vertex if at least one
vertex represents a target location, and is otherwise zero. Compared with the Prim
algorithm used to find a minimum spanning tree for a undirected graph [62], we
use the extended Voronoi clustering strategy proposed in §2.4.1 to obtain a min-
cost generalized arborescence (MCGA) for the digraph G where the sum of all the
edge weights of the arborescence is minimum. The procedure to achieve an MCGA
is shown in Algorithm 1. Let fa be the sum of all the edge weights of an MCGA of
G, and fo be the optimal objective value in (2.2). Then, we first investigate some
property of the optimal solution to the problem with an asymmetric travel cost
matrix.

Lemma 2.4. It holds that fa 6 fo.

Proof. We first prove the statement when m, the number of all the vehicles, is
one. In this case, only one vehicle needs to visit all the target locations, which
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is a variant of the TSP [36]. An optimal route for the vehicle leaving from its
initial position to visit all the targets is in fact an arborescence of G according to
Definition 1. As fa is the cost of the min-cost arborescence, fa 6 fo.

When m > 1, from the definition of the generalized arborescence in Definition
2, the optimal solution of the problem is also a generalized arborescence of G, in
which both the outdegree and indegree of each vertex is at most one. As fa is the
sum of all the edge weights of the min-cost generalized arborescence, the proof is
complete.

Removing the zero cost edges from the MCGA to get an arborescence for each
vehicle and duplicating each directed edge of the arborescence but with the op-
posite direction, we can construct a Eulerian graph [10] for each vehicle (this is
inspired by the multi-vehicle algorithm [67]). Let fda be the sum of all the edge
weights of the arborescences after duplicating their directed edges.

Lemma 2.5. The optimal total travel time fo is upper bounded by fo 6 fda, where
fda = 2fa if the travel cost matrix is symmetric.

Proof. For the first statement, similar to the multi-vehicle algorithm operating
on undirected graphs [67], we can obtain a TSP tour for each vehicle based on
the corresponding Eulerian graph. As the directed edges satisfy the inequality in
Lemma 2.3, the total travel time of each vehicle is at most the sum of all the edge
weights of the duplicated arborescence for each vehicle. Thus, the total travel time
of all the vehicles is not greater than the sum of all the edge weights of the dupli-
cated generalized arborescence. As the total travel time of each feasible solution
is an upper bound for the optimal solution, the first statement is proved.

When the travel cost matrix is symmetric, the minimum travel times between
any two vertices in G are the same. Thus, fda = 2fa as fda is the sum of all the
edge weights of the duplicated generalized arborescence.

Using the extended Voronoi clustering strategy in Algorithm 1, we obtain a
min-cost arborescence for each vehicle. Then, we can utilize the target-inserting
metrics in §2.4.2 to put the targets on each arborescence into sequence. Inte-
grating the extended Voronoi clustering strategy with the smallest marginal cost
principle, we obtain a task assignment algorithm, called EVM for simplification.
Let fEVM be the vehicles’ total travel time of the solution resulting from EVM.

Theorem 2.6. The EVM guarantees that fEVM/fo 6 fda/fa.

Proof. The proof is conducted by induction. The solution resulting from EVM has
the same target assignment compared with that of the duplicated min-cost gen-
eralized arborescence as they use the same target clustering strategy (2.12). Let
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f jda be the sum of all the edge weights of the duplicated arborescence for vehicle
j. Then, fda =

∑
j∈R f jda. The first target k⋆ to be inserted in oj is determined

by (2.18) for EVM. It is straightforward to see that the first target inserted in oj
is the same as the first target inserted in the min-cost arborescence for vehicle j
according to line 3 of Algorithm 1. Thus, f j1EVM 6 f j1da as f j1EVM = f j1da, where the
superscripts 1 and j are associated with the total travel time for vehicle j to visit
the first target inserted in oj .

Now suppose the first |Tj | − 1 targets inserted in oj and those inserted in the
arborescence for vehicle j are the same and f

j|Tj |−1
EVM 6 f

j|Tj |−1
da , where Tj con-

tains all the targets in the end assigned to vehicle j. As the inequality specified
in Lemma 2.3 holds for the optimal travel times between the vertices in G and
according to (2.18), for EVM the marginal travel time incurred by inserting the
last target k into oj is

δf jEVM = min
1<q6|oj |+1

{t(oj ⊕q k)− t(oj)}

= min{ min
q6|oj |−1

(t(oqj , k) + t(k, oq+1
j )− t(oqj , o

q+1
j )),

t(pj , k) + t(k, o1j )− t(pj , o1j ), t(o
|oj |
j , k)}

6 min
q6|oj |−1

{t(oqj , k) + t(k, oqj), t(k, o
q+1
j ) + t(oq+1

j , k)}, (2.20)

where pj is the index of vehicle j’s initial position and oqj is the qth target on oj .
On the other hand, considering the travel time cost on duplicating the edge of
the min-cost arborescence, the minimum travel time incurred by inserting the last
target k into the arborescence for vehicle j is

δf jda = t(k, oq
⋆

j ) + min
q6|oj |

t(oqj , k), (2.21)

where q⋆ = argminq6|oj | t(o
q
j , k). It then follows that δf jEVM 6 δf jda.

Combining (2.20), (2.21) and f j|Tj |−1
EVM 6 f

j|Tj |−1
da , we get

f
j|Tj |
EVM = f

j|Tj |−1
EVM + δf jEVM

6 f
j|Tj |−1
da + δf jda. (2.22)

As f jda = f
j|Tj |−1
da + δf jda, it holds that f j|Tj |

EVM 6 f
j|Tj |
da for each vehicle j. Thus,∑

j∈R f jEVM 6
∑

j∈R f jda, which proves fEVM 6 fda. Combining with fa 6 fo in
view of Lemma 2.4 and fEVM 6 fda, we have fEVM/fo 6 fda/fa.

Theorem 2.6 gives an upper bound of the worst case performance of EVM
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compared with an optimal solution with the asymmetric travel cost matrix, which
extends the upper bound result in [43] for the problem with the symmetric travel
cost matrix. Furthermore, based on Lemma 2.5, the upper bound fda/fa is 2 if the
travel cost matrix is symmetric which is the same as in [43]. We now investigate
the property of the marginal-cost-based clustering strategy (MC) in §2.4.1 which
directly puts the target locations assigned to each vehicle into the sequence during
their assignment. Let fMC be the vehicles’ total travel time of a solution resulting
from MC.

Theorem 2.7. The task assignment algorithm MC guarantees that the total travel
time fMC 6 fEVM.

Proof. The proof is carried out by induction. The algorithm MC assigns the target
locations according to (2.15), while EVM is based on (2.12). One can check that
the first targets chosen by the two algorithms are the same. Thus, f1MC 6 f1EVM,
where the superscript 1 means the vehicles’ total travel time after assigning the
first target.

Now suppose the first |T | − 1 targets assigned by the two algorithms are the
same and f

|T |−1
MC 6 f

|T |−1
EVM . From the inequality in Lemma 2.3 and according to

(2.15), for MC the marginal travel time incurred by inserting the last target k is

δfMC = min
j∈R,1<q6|oj |+1

{t(oj ⊕q k)− t(oj)}

6 min
1<q6|oj⋆ |+1

{t(oj⋆ ⊕q k)− t(oj⋆)}, (2.23)

where j⋆ = argmini∈oj ,j∈R t(i, k) is determined by (2.12) and oj contains those
targets already assigned to vehicle j. On the other hand, EVM assigns the last
target k as

δfEVM = min
1<q6|oj⋆ |+1

{t(oj⋆ ⊕q k)− t(oj⋆)}, (2.24)

where j⋆ = argmini∈oj ,j∈R t(i, k). Thus, δfMC 6 δfEVM.

Combining (2.23), (2.24) and f |T |−1
MC 6 f

|T |−1
EVM , we get

fMC = f
|T |−1
MC + δfMC

6 f
|T |−1
EVM + δfEVM. (2.25)

As fEVM = f
|T |−1
EVM + δfEVM, it holds that fMC 6 fEVM.

The proposed clustering-based algorithms can be applied to the task assign-
ment problem for vehicles in time-varying drift fields by assigning the target loca-
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tions to the vehicles based on a time-varying travel cost matrix which needs to get
updated as the drift field changes. This obviously will affect the visiting sequence
of target locations, and as a result, the performance of the solution constructed
by the clustering-based algorithms at any given time can only be guaranteed for a
limited time thereafter.

Now we have presented all the theoretical results of this chapter, in the follow-
ing section, we carry out simulation studies.

2.5 Simulations

One can obtain four task assignment algorithms after integrating the target clus-
tering strategies with the target-inserting metrics: integrating the Voronoi clus-
tering strategy with the nearest principle (VN); integrating the Voronoi clustering
strategy with the smallest marginal cost principle (VM); integrating the extended
Voronoi clustering strategy with the nearest principle (EVN); and integrating the
extended Voronoi clustering strategy with the smallest marginal cost principle
(EVM). As the marginal-cost-based clustering strategy (MC) directly determines
the targets’ visiting sequence during their assignment, it is already a task assign-
ment algorithm. Integrating with the proposed path planning method, the existing
task assignment algorithms can be used to solve the task assignment problem. The
proposed clustering-based algorithms are compared with a GA which is a popular
heuristic algorithm for VRP [46]. The GA encodes each target as a numbered gene
and inserts m−1 marker genes into the target genes. Then, each chromosome rep-
resents a candidate solution to the task assignment problem. The GA employs the
widely used tournament selection because of its efficiency and simplicity, which
preserves gene diversity while guaranteeing all individuals might be selected [2].

Monte Carlo simulations are carried out to test the proposed algorithms, where
all the experiments have been performed on an Intel Core i5− 4590 CPU 3.30 GHz
with 8 GB RAM, with algorithms compiled by Matlab under Windows 7. The
solution quality of each algorithm is quantified by

q =
f

fa
, (2.26)

where f is the objective value in (2.2) and fa is the sum of all the edge weights of
an MCGA of the target-vehicle digraph G. Since fa 6 fo, from Lemma 2.4 where
fo is the vehicles’ total travel time of an optimal solution, a value of the ratio q

closer to 1 means a better performance of the solution.
The algorithms are tested on the task assignment problem for multiple vehi-

cles with v = 1 in a square drift field with edge length 103m and v⃗c = 10−3[0.3x+

0.2y,−0.2x + 0.3y]T . The number of chromosomes in the GA is empirically set to
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Table 2.1: The average solution quality q of the algorithms (A) on 400 scenar-
ios for the task assignment problem under different instances (I) where n50m10
means 10 vehicles need to visit 50 target locations.

HHHHHI
A

VN VM EVN EVM MC GA

n50m10 1.8641 1.5099 1.6811 1.3222 1.1581 1.4626
n100m10 2.0078 1.5877 1.7956 1.3725 1.2077 1.7987
n110m10 2.0090 1.5770 1.7955 1.3730 1.2159 1.8968
n120m10 2.0180 1.5888 1.8059 1.3792 1.2264 1.9993
n120m12 2.0333 1.6067 1.7750 1.3662 1.2076 2.0869
n120m14 2.0481 1.6188 1.7499 1.3575 1.1918 2.1669
n120m16 2.0570 1.6318 1.7293 1.3468 1.1774 2.2309
n120m18 2.0607 1.6399 1.7127 1.3338 1.1660 2.2963
n120m20 2.0592 1.6418 1.7003 1.3276 1.1562 2.3777

be 120, and the crossover rate and mutation rate for the GA are 0.9 and 0.1 respec-
tively. The GA terminates at the maximal iteration number 350. Several instances
n50m10, n100m10, n110m10, n120m10, n120m12, n120m14, n120m16, n120m18

and n120m20 are generated where n50m10 means 10 vehicles need to visit 50 tar-
get locations. For each instance, 400 scenarios of the initial positions of the targets
and vehicles are randomly generated. The average q of the algorithms on each in-
stance is shown in Table 2.1, and the corresponding average computation time for
each algorithm is listed in Table 2.2. Firstly, Table 2.1 shows VM performs better
than VN, and EVM performs better than EVN. The four algorithms first cluster the
target locations to the vehicles, and then employ the nearest inserting principle or
the smallest marginal cost principle to put the target locations assigned to each
vehicle into sequence. In other words, the target locations have the same assign-
ment for VM and VN, and for EVM and EVN. Thus, the better performances of
VM over VN and EVM over EVN imply that the smallest marginal cost principle is
more effective than the nearest principle to put the target locations into sequence.
The reason lies partly in the fact that for each vehicle, the smallest marginal cost
principle leads to the ordering of the target locations after computing the incurred
travel cost at all possible positions on the vehicle’s route; in contrast, the nearest
principle is myopic in the sense that it inserts the target location with the minimal
incurred cost at the end of the vehicle’s route.

Secondly, Table 2.1 shows EVM performs better than VM, and EVN performs
better than VN, which reflects the advantage of the extended Voronoi clustering
strategy over the Voronoi clustering strategy. The reason is that the former strat-
egy clusters a target using both the vehicles’ initial locations and the clustered
targets’ locations, while the later only uses the vehicles’ initial locations. Finally,
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Table 2.2: The corresponding average computation time (s) for the algorithms
(A) to get the solution to the task assignment problem under different instances
(I).

HHHHHI
A

VN VM EVN EVM MC GA

n50m10 0.0279 0.0281 0.0418 0.0423 0.0326 86.7761
n100m10 0.0500 0.0574 0.0984 0.1410 0.0590 140.6570
n110m10 0.0519 0.1130 0.0988 0.2904 0.0722 150.0892
n120m10 0.2381 0.2424 0.3665 0.4288 0.2493 163.2563
n120m12 0.2415 0.2440 0.4363 0.4434 0.2593 172.2250
n120m14 0.2480 0.2483 0.4453 0.4472 0.2616 176.7572
n120m16 0.2510 0.2541 0.4537 0.4566 0.2821 183.0387
n120m18 0.2563 0.2571 0.4655 0.4685 0.2913 197.1980
n120m20 0.2585 0.2597 0.4733 0.4744 0.3048 226.9434

MC performs better than EVM as shown in Table 2.1, which verifies Theorem 2.7.
The reason is that MC considers the overall incurred travel cost for all the vehicles
when clustering a target, which makes use of the complete geographic informa-
tion on the vehicles’ locations and the clustered targets’ locations. In addition, the
q of VM, EVN, EVM and MC shown in Table 2.1 is stably below twice of the opti-
mal for each instance, which displays the efficient and robust performances of the
algorithms. However, the GA’s performance deteriorates as the size of the prob-
lem increases as shown in the last column of Table 2.1. Finally, in Table 2.2 the
mean computation time of the proposed algorithms does not increase too much
compared with the GA, which shows the proposed algorithms can scale with the
problem size. The reason is that the clustering-based algorithms are heuristic in
the sense that they assign the targets based on the geographic locations of the
vehicles as well as the locations of those targets already clustered. The small com-
putation time implies in particular the efficiency of the proposed algorithms when
the solution’s quality is improved by location-based clustering.

To further evaluate the solution quality q for the 400 scenarios of each instance,
the Wilcoxon signed-rank test [39] is carried out in a two-tail test with the 5%

significance level for each pair of the algorithms. It is clear that the q of 400

scenarios on each instance differ significantly between the proposed algorithms
(q from left to right corresponds to MC → EVM → VM → EVN → VN). This
implies the algorithms have an increasingly better performance as VN − EVN −
VM − EVM −MC. The Wilcoxon signed-rank test shows that the performance of
the GA deteriorates as the problem size increases, which is better than VM and
worse than EVM for n50m10, better than VN, worse than VM and the same as EVN
for n100m10, better than VN and worse than EVN for n110m10, worse than EVN
and the same as VN for n120m10, and worse than VN for the remaining instances.
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The results of the Wilcoxon signed-rank test are consistent with what is shown in
Table 2.1.

2.6 Conclusion

In this chapter, we have investigated the task assignment problem in which mul-
tiple dispersed vehicles need to efficiently visit a set of target locations in a time-
invariant drift field. A path planning method has been first designed which enables
the vehicles to move between two prescribed locations in a drift field with minimal
time. The travel cost matrix resulting from the path planning method provides the
route information for the target location assignment. In addition, several target
clustering strategies and two target inserting principles have been proposed. The
target clustering strategies assign the target locations to the vehicles based on the
travel cost matrix while the target inserting principles put the target locations as-
signed to each vehicle into sequence. Integrating the clustering strategies and the
target inserting principles, we have obtained several algorithms which can effi-
ciently solve the target visiting problem. The chapter’s practical contributions are
threefold: First, the deduced optimal navigation law provides a guiding principle
for navigating vehicles in the presence of winds or currents. Second, the defini-
tion of the generalized arborescence helps to clarify for practitioners the space of
feasible solutions to the task assignment problem. Third, the four clustering-based
strategies offer a set of tools for different scenarios in logistic applications.





Chapter 3

Multi-vehicle task assignment in a
time-invariant drift field with obstacles

THIS chapter studies the task assignment problem in which a fleet of dispersed
vehicles needs to visit a set of target locations in a time-invariant drift field

with obstacles while trying to minimize the vehicles’ total travel time. The vehi-
cles have different capabilities, and each kind of vehicles needs to visit a certain
type of target locations; each target location might have the demand to be visited
more than once by different kinds of vehicles. We prove that the problem is in fact
NP-hard. To find approximate solutions for such a challenging problem, we first
design a path planning algorithm to minimize the time for a single vehicle to travel
between two given locations through the drift field while avoiding obstacles. The
path planning algorithm provides the travel cost matrix for the target assignment,
and generates routes once the target locations are assigned to the vehicles. Then,
we propose an auction-based distributed task assignment algorithm to assign the
target locations to the vehicles using only local communication. The task assign-
ment algorithm guarantees that all the demands of the targets will be satisfied
within a total travel time that is at most twice of the optimal one when the cost
matrix is symmetric. Finally, numerical simulations show that the algorithm can
lead to solutions close to the optimal.

3.1 Introduction

There are some research works considering the path planning for the employed
vehicles to avoid obstacles [32, 33, 38, 64]. In [32], distance functions were stud-
ied for robot path planning in the presence of obstacles where the main principle
is to express obstacle avoidance in term of distances between the obstacles and
the part of the robot that may potentially interface into the obstacles. The path
planning of multiple robots with kinodynamic constraints along specified paths
was addressed in [64] by first solving the two-point boundary value problems on
the minimum and maximum possible traversal times that satisfy the kinematics
and dynamics constraints. Later on, a steering potential function was designed in
which the robots’ headings to the goal and obstacles, and the distance to the goal
are used to compute a potential field to navigate the robots [38]. The angular ac-
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celeration of a robot is controlled by the potential field to steer the robot towards
its goal and away from obstacles. The time-optimal path planning for a Dubins car
operating in its workspace while avoiding collision with obstacles was investigated
in [33]. However, little attention has been paid to the path planning for vehicles
in a drift field with obstacles, let alone coordinating multi-vehicles to compete for
some tasks in a drift field with obstacles.

In the previous chapter, we have studied the multi-vehicle task assignment
problem in a drift field without obstacles. In this chapter, we investigate the task
assignment problem for which a set of target locations in a time-invariant drift
field with obstacles needs to be visited by several dispersed vehicles as energy-
efficiently as possible. The vehicles are heterogeneous in the sense that each kind
of vehicles carrying one specified sensor needs to visit a certain type of targets,
and some target locations might need to be visited by vehicles with different ca-
pabilities in order to e.g. measure ocean salinity, temperature and conductivity.
To solve the problem, we design a path planning method and a distributed task
assignment algorithm (DTAA). Our main contributions are as follows. Firstly, the
path planning algorithm can generate the time-optimal path for a vehicle travel-
ing between two prescribed locations in a time-invariant drift field with obstacles,
which provides the cost matrix to be used later for the task assignment. Secondly,
we prove that the task assignment problem is NP-hard, and achieve a tight lower
bound on the optimal solution by using tools from graph theory. The NP-hardness
property of the problem means un-affordable long computation time is needed to
get the optimal solution when the numbers of vehicles and tasks grow. Thus, the
tight lower bound is critical to measure the performance of a task assignment al-
gorithm. Lastly, the DTAA is fully distributed where every vehicle cooperates with
the communication-connected local neighbors while guaranteeing that all the vis-
iting demands of the targets are satisfied within the total travel time, which, when
the cost matrix is symmetric, is at most twice of the optimal.

The rest of this chapter is organized as follows. In Section 3.2, the formula-
tion for the heterogeneous task assignment problem is given. Section 3.3 presents
the path planning algorithm which generates the cost matrix for the task assign-
ment, and in Section 3.4 the task assignment problem is analyzed. Section 3.5

presents the DTAA and Section 3.6 analyzes the performance of DTAA. We present
the simulation results in Section 3.7 and conclude the chapter in Section 3.8.

3.2 Problem formulation

Consider m dispersed aerial/marine vehicles that need to visit a set of n target
locations in a planar time-invariant drift field with obstacles while trying to min-
imize the vehicles’ total travel time. Each vehicle has one specified capability to
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visit a certain kind of targets and several vehicles might have the same capabil-
ity. Some targets need to be visited more than once by vehicles with different
capabilities but at most once by vehicles with the same capability.

3.2.1 Formulation as an optimization problem

We use the vector v⃗c = [vcx, vcy]
T with magnitude vc to denote the drift velocity

of the field with respect to some coordinate system fixed to the ground. Note that
v⃗c varies with locations. The vehicles’ velocity v⃗ is assumed with constant speed v
relative to a static drift field [73]. We assume that the vehicles are free of turning
ratio constraints since the dimension of the drift field is significantly larger than
the vehicles. The kinematics of each vehicle are governed by (2.1).

Let T = {1, . . . , n} be the labeling of the target locations, and R = {1, . . . ,m}
be the labeling of the vehicles. We use V to denote the set of indices of all the
vehicles’ initial locations, namely V = {n+ 1, · · · , n+m}, where each vehicle has
one capability aj ∈ A with |A| 6 m. Let Rq, q ∈ {1, · · · , |A|}, be the vehicle set
that contains the indices of those vehicles with the same capability where R =

∪|A|
q=1Rq and Rq ∩ Rp = ∅ for ∀q ̸= p. The binary value yjq is employed which is

one if target j requires to be visited by one vehicle fromRq and otherwise zero. Let
C = (t(i, j))(m+n)×(m+n), i, j ∈ T ∪V, denote the cost matrix where t(i, j) specifies
the time for a vehicle to travel from i to j in the drift field. The time t(i, j) to be
minimized is derived from a properly designed path planning algorithm where
t(i, i) = 0 for each i. Let σijk be the path-planning mapping that maps the indices
i ∈ T ∪ V and j ∈ T of the starting and ending locations of a vehicle k ∈ R to a
binary value, which equals one if and only if it is planned that vehicle k directly
travels from location i to j and otherwise zero. The minimization of the vehicles’
total travel time for satisfying all the visiting demands of the target locations is to
minimize

f =
∑

i∈T ∪V,j∈T ,k∈R

t(i, j)σijk, (3.1)

subject to ∑
i∈T ∪V,k∈Rq

σijk = yjq, ∀ j ∈ T ,∀ Rq ⊆ R; (3.2)

∑
j∈T ,k∈Rq

σijk 6 1, ∀ i ∈ T ∪ V,∀ Rq ⊆ R. (3.3)

Constraint (3.2) ensures that the visiting demand of each target is satisfied; (3.3)
means that each target location and each vehicle’s initial location is departed at
most once for each kind of vehicles Rq ⊆ R.
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After formulating the task assignment problem as a constrained minimization
problem, we present in the following section the path planning algorithm that is
critical for solving the overall optimization problem.

3.3 Path Planning Algorithm

In this section, we conduct a path planning algorithm based on grid modeling for
a vehicle to efficiently travel through two prescribed locations in a drift field while
avoiding any obstacle. The operation environment is first evenly divided into grids
of small square cells where the cells occupied by obstacles are marked as unfea-
sible areas. The square cells are labeled by ascending integers from 1, 2, 3, · · · .
Potential moving directions for a vehicle located in a cell are shown in Fig. 3.1,
where the angle θnet of the net velocity for a vehicle to move to the neighboring
cell i ∈ {1, · · · , 8} is (i− 1)π/4. Let the edge length of each square cell be l. Then,
the corresponding distance is l for the vehicle to move to its neighboring cells with
odd number labels as shown in Fig. 3.1, while the distance is

√
2l to move to those

with even number labels.

 !"#$%! &
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Figure 3.1: The possible moving directions for a vehicle to travel to its neighbor
cells.

The feasibility of moving into a neighbor cell depends not only on whether
obstacles occupy the cell, but also on the strength and orientation of currents at
the vehicle’s location. The currents within each square cell are assumed to be the
same, which is natural when the operation area is discretized with high resolution.
We obtained the magnitude of the optimal net velocity of an underwater vehicle
in [80], and calculated the rate of change of the vehicle’s optimal navigation angle
in a drift field in (2.6) under the assumption that v > vc. Here, we generalize the
analysis. Let vnet be the magnitude of the net velocity [ẋ, ẏ]T of the vehicle with
the motion dynamics of (2.1), and θc be the heading of the currents v⃗c. Then, in
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Figure 3.2: Optimal path planning for a vehicle with v = 1 to travel between two
locations in the drift field v⃗c = 10−2[0.3x + 0.2y,−0.2x + 0.3y]T with an obstacle
colored in green where the travel time resulting from the Dijkstra algorithm is
t(1, 2) = 66.5618s.

view of (2.1), it holds that

v2net − 2vcvnetcos(θnet − θc)− (v2 − v2c ) = 0. (3.4)

According to the discriminant of roots of a quadratic equation, the feasible solution
vnet to (3.4) exists when

|sin(θnet − θc)| 6 v/vc. (3.5)

Based on (3.5) and the obstacle information, one can determine whether a vehicle
can move to a certain neighbor cell. The time for the vehicle to travel from its
location to a neighbor cell is the division of the travel distance by vnet which can
be obtained by (14) in [80]; the time is infinite if the neighbor cell is impossible
for the vehicle to visit due to obstacles or currents.

For each cell, we first use (3.4), (3.5) and the obstacle information to calculate
the time for a vehicle to move from the cell to each neighbor cell. Then, a weighted
digraph whose vertices contain the indices of all the cells is constructed, where
the weight for a directed edge is the time for a vehicle to travel from the starting
vertex to the ending vertex. For a given source vertex in the graph, Dijkstra’s
algorithm finds the shortest path between that node and every other node [55,
P196-206]. Thus, once the weighted digraph containing the indices of all the cells



32 3. Multi-vehicle task assignment in a time-invariant drift field with obstacles

is constructed, Dijkstra’s algorithm can find the path with the minimum travel time
between any two given locations in T ∪ V, which leads to the travel cost matrix C
for (3.1). We show the performance of the path planning algorithm for a vehicle
to travel through two given locations in a drift filed with an obstacle in Fig. 3.2,
where the vehicle avoids the obstacle effectively while adjusting its route to the
currents.

Remark 3.1. The cost matrix C is in general asymmetric, namely t(i, j) ̸= t(j, i) for
∀i ̸= j, and satisfies t(i, k) 6 t(i, j) + t(j, k) as Dijkstra’s algorithm finds the path
with the minimum travel time between any two locations i and k.

3.4 Problem analysis

3.4.1 Proof of NP-Hardness

Consider a digraph G = (V,E,C) that consists of a set of vertices V = T ∪ V,
a set of directed edges E, and the travel cost matrix C that contains the weight
of each edge in E. We first introduce the multiple traveling salesman problem
(MTSP) which is to determine a set of routes for m salesmen who all start from
and return to a home city/depot to visit a set of target locations once for each
target. It is a relaxation of the vehicle routing problem (VRP) without the capacity
constraint [6]. In VRP, a fleet of vehicles initially located at one or several depots
is required to optimally transport the products to a set of dispersed customers and
then returns to the respective starting depots, and the VRP is NP-hard [75]. If
the vehicles do not need to return to the starting depots, the VRP is called the
open VRP which is also NP-hard [26]. When the number of the vehicles is one,
the MTSP is reduced to the traveling salesman problem (TSP) and the open MTSP
is then an open TSP. In graph theory, the open TSP determines a Hamiltonian
path in an undirected or directed graph that connects in sequence each vertex
exactly once, and the TSP involves determining a Hamiltonian cycle. Determining
whether such paths and cycles exist in graphs is the Hamiltonian path problem,
which is NP-complete [30, 199-200]. The requirement of returning to the starting
city does not change the computational complexity of the problem. So the open
MTSP (OMTSP) is NP-hard as well [28].

Proposition 3.2. The task assignment problem (3.1) is NP-hard.

Proof. We first prove the NP-hardness of (3.1) with homogeneous vehicles by
showing that: (i) every instance of the OMTSP can be reduced to an instance of
(3.1) with homogeneous vehicles in polynomial time and (ii) an optimal solution
to (3.1) with homogeneous vehicles provides an optimal OMTSP solution.

Let G′ = (V ′, E′, C ′) with |V ′| = n+ 1 being an arbitrary input to the OMTSP,
where n is the number of dispersed target locations. To prove (i), we give a
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Figure 3.3: A transformation from the OMTSP on graph G′ to the task assignment
problem with homogeneous vehicles on graph G where (a) G′ = (V ′, E′, C ′) and
(b) G = (V,E,C).

polynomial-time transformation of G′ into an input of G = (V,E,C) to (3.1) with
homogeneous vehicles, shown in Fig. 3.3 where {T1, T2, T3} is the target set, D is
the depot, and {V1, V2} is the vehicle set.

Let graph G first inherit all the target vertices of G′. Then, the vertices repre-
senting the dispersed vehicles are added in G as V1 and V2. Now for each edge
(D,Ti) in E′ with the weight t′(D,Ti), add a directed edge from each vehicle
vertex Vj to the target Ti as (Vj , Ti) with the weight t(Vj , Ti) = t′(D,Ti). Let
t(Vj , Vk) = 0, ∀j, k ∈ R, and the weights of other edges of G be the same as G′.
Thus, the transformation from G′ to G is complete, which is the input to (3.1) with
homogeneous vehicles.

To prove (ii), we show that an optimal solution to the task assignment problem
with homogeneous vehicles corresponds to an optimal OMTSP solution. After the
transformation of G′ to G, it is straightforward to see that an optimal solution to
(3.1) with homogeneous vehicles is also optimal to the OMTSP based on the edge
weights of the graph shown in Fig. 3.3 (a) and Fig. 3.3 (b). Thus, (3.1) with
homogeneous vehicles is NP-hard.

When the vehicles are heterogeneous and some target locations need to be
visited more than once by vehicles with different capabilities, the task assignment
problem (3.1) can be divided into |A| sub-problems where subproblem q ∈ {1, · · · ,
|A|} contains the target locations in Tq needed to be visited by the vehicles in Rq.
In view of the NP-hardness of each sub-problem with homogeneous vehicles, the
task assignment problem is NP-hard. The proof is complete.

We add the following remark to emphasize why the problem we study is diffi-
cult in nature.

Remark 3.3. A target location might belong to several subproblems when it needs to
be visited more than once by vehicles with different capabilities.
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3.4.2 A lower bound on the optimal solution

It can be costly to solve (3.1) optimally due to the NP-hardness of the problem.
As a consequence, it is natural to design heuristic algorithms to find sub-optimal
solutions. Then, one issue arises on how to evaluate the level of optimality of
a sub-optimal solution as the optimal is typically unknown. In this section, a
lower bound on the minimum total travel time for the vehicles to satisfy all the
visiting demands of the target locations while avoiding any obstacle is constructed.
As some target locations might need to be visited more than once by vehicles
with different capabilities, we first decouple the problem by dividing all the target
locations into |A| subgroups Tq, q ∈ {1, · · · , |A|}, where T = ∪|A|

q=1Tq and the
targets within the subgroup Tq need to be visited by the vehicles from vehicle set
Rq.

Let Gq be a digraph whose vertices contain the indices of the vehicles inRq and
the target locations in Tq, ∀q ∈ A. The weight for a directed edge is the minimum
time for a vehicle to travel from the starting vertex to the ending vertex if at least
one vertex represents a target location and otherwise zero. We extend the Prim
algorithm [62], used to find a minimum spanning tree for an undirected graph, to
obtain an MCGA for the digraph Gq. The procedure to achieve an MCGA is shown
in Algorithm 1. Let faq be the sum of all the edge weights of an MCGA of Gq, and
foq be the minimum total travel time for the vehicles in Rq to visit all the target

locations in Tq. We set fa =
∑|A|

q=1 f
a
q , and employ fo as the minimum total travel

time for (3.1). Then, we first present a lower bound on fo.

Theorem 3.4. The optimal total travel time has a lower bound fa 6 fo.

Proof. We first prove that the optimal total travel time for the vehicles in Rq to
visit all the targets in Tq is lower bounded by the sum of all the edge weights of an
MCGA of Gq, i.e., faq 6 foq . When the number of all the vehicles in Rq is one, the
vehicle needs to visit all the target locations in Tq which is an open TSP problem
where the vehicle does not return to its initial location. An optimal open TSP route
for the vehicle to visit all the targets is in fact an arborescence of Gq according to
Definition 1. As faq is the sum of all the edge weights of a min-cost arborescence,
the total travel time for the optimal open TSP route satisfies faq 6 foq .

When m > 1, from the definition of the generalized arborescence in Definition
2, the optimal solution of the problem is also a generalized arborescence of Gq. As
faq is the sum of all the edge weights of an MCGA, faq 6 foq .

As R =
∑|A|

q=1Rq where Rq ∩ Rp = ∅ for ∀q ̸= p, we get fo =
∑|A|

q=1 f
o
q . In

view of faq 6 foq , it holds that
∑|A|

q=1 f
a
q 6

∑|A|
q=1 f

o
q . Thus, the proof is complete.

Having done the problem analysis, we construct a distributed task assignment
algorithm in the next section.
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3.5 Distributed task assignment algorithm

In this section, we present the distributed algorithm DTAA that relies on both
an auction mechanism and a marginal-cost-based target ordering principle. We
satisfy the visiting demands of the target locations by assigning the targets in each
Tq, ∀q ∈ A, to the vehicles in Rq through using the following distributed auction
mechanism and the target ordering principle.

3.5.1 Distributed auction mechanism

The first phase of the DTAA is the distributed auction mechanism which is used to
assign the targets within each Tq to the vehicles in Rq. The auction mechanism
works under all connected topologies of the communication network among all the
vehicles. Each vehicle j inR carries an information tuple Ij = {j, pj , aj , cj , βj , oj},
where j is the vehicle’s unique identifier, pj is the index of vehicle j’s initial posi-
tion, aj ∈ A is j’s capability, cj is a |T |-tuple where its rth component cjr stores
the minimal incurred time known by vehicle j for the vehicle kept in βjr to visit
target r in Tq, and oj keeps the target locations already assigned to vehicle j which
is initialized to be {pj}.

Let the target set T u
q contain the indices of those unassigned targets in Tq,

which is initialized as Tq. During the auction process, each vehicle j first updates
its cjr by bidding for every target r ∈ T u

q itself and initializes the βjr as

cjr = min
k∈oj

t(k, r), βjr = j, (3.6)

where cjr is infinite if vehicle j does not have the capability to visit r. We enable
all the vehicles to bid for each target in T u

q instead of only using vehicles in Rq as
the vehicles in Rq might not be communication-connected. The motivation is that
through a certain number of information updates through communicating with
those vehicles outside of Rq, the vehicles in Rq know the minimum time incurred
to visit each target in T u

q .
Then, for ∀r ∈ T u

q , cjr and βjr are updated by vehicle j through local commu-
nication with directly connected neighbor vehicles in Rj

N as

cjr = ci⋆r, βjr = βi⋆r, (3.7)

where i⋆ = argmini∈Rj
N
cir. After at most |R| synchronized iterative communica-

tions, cj and βj reach consensus for every vehicle in R. Then, the first target r⋆ in
T u
q to be assigned is

r⋆ = argmin
r∈T u

q

cjr, (3.8)
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Algorithm 2 Distributed auction mechanism for vehicle j ∈ R.
Input: The directly communication-connected vehicle set Rj

N , cost matrix C, target set Tq
and vehicle j’ position index pj .

Output: All the targets in Tq are assigned.
1: T u

q ← Tq.
2: oj ← {pj}.
3: while T u

q ̸= ∅ do
4: for ∀r ∈ T u

q do
5: cjr ← mink∈oj t(k, r),
6: βjr ← j.
7: end for
8: s← 0.
9: while s < |R| do

10: Send cj and βj to every vehicle i ∈ Rj
N \ {j}.

11: Receive ci and βi from every vehicle i ∈ Rj
N \ {j}.

12: for ∀r ∈ T u
q do

13: i⋆ ← argmin
i∈Rj

N
cir,

14: cjr ← ci⋆r,
15: βjr ← βi⋆r.
16: end for
17: s← s+ 1.
18: end while
19: r⋆ ← argminr∈T u

q
cjr.

20: if j = βjr⋆ then
21: oβjr⋆

← oβjr⋆
∪ {r⋆}.

22: end if
23: T u

q ← T u
q \ {r⋆}.

24: end while

which is assigned to vehicle βjr⋆ . Then, the targets already assigned to vehicle
βjr⋆ and the unassigned target set T u

q are updated by

oβjr⋆
= oβjr⋆

∪ {r⋆}, T u
q = T u

q \ {r⋆}. (3.9)

The auction process continues until the unassigned target set T u
q is empty. The

distributed auction mechanism applied to each vehicle j for bidding the targets in
Tq is shown in Algorithm 2.

3.5.2 Target locations’ ordering principle

After the auction operation, all the target locations in T have been assigned where
the target locations assigned to vehicle j ∈ R are kept in oj . Putting the target
locations assigned to each vehicle into a sequence to minimize the vehicle’s total
travel time is in fact the open TSP problem. Let λj , initialized as {pj}, be the
route with the ordered target locations for vehicle j, and ouj contain the unordered
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targets in oj where ouj is initialized as oj \ {pj}. In this subsection, we design the
marginal-cost-based target ordering principle to construct λj , which determines
the first target r⋆ in ouj to be inserted in λj and its visiting sequence k⋆ for vehicle
j by

(r⋆, k⋆) = argmin
1<k6|λj |+1,r∈ouj

{t(λj ⊕k r)− t(λj)}, (3.10)

where the operation λj ⊕k r inserts target r at the kth position of λj . Target r is
inserted to the end of λj if k = |λj |+ 1, and t(λj) denotes the total travel time for
vehicle j to visit all the targets in λj . Then, route λj and the unordered target set
ouj are updated to

λj = λj ⊕k⋆ r⋆, ouj = ouj \ {r⋆}. (3.11)

The target inserting process continues until the unordered target set ouj is empty.
Now we discuss in more detail why our proposed algorithm DTAA works.

3.6 Performance analysis of DTAA

In the above section, the task assignment problem is decoupled by dividing all the
target locations into |A| subgroups: the targets within each subgroup Tq need to be
visited by the vehicles from vehicle setRq, whereRq∩Rp = ∅ for ∀q, p ∈ A, q ̸= p.
We now analyze the performance of the DTAA.

3.6.1 Convergence performance

Removing the zero cost edges connecting each two vehicle vertices after obtaining
the MCGA of each Gq,∀q ∈ A, we get an arborescence for each vehicle in Rq. We
now present some convergence property of the DTAA.

Theorem 3.5. The targets in Tq, ∀q ∈ A, assigned to each vehicle in Rq by the DTAA
converge to the targets in the vehicle’s arborescence resulting from the MCGA of Gq
after at most |Tq||R| synchronized communication iterations.

Proof. We first prove that the DTAA produces a stable assignment after at most
|Tq||R| synchronized iterations for Gq. There are |Tq| targets to be assigned to |Rq|
vehicles. The DTAA uses the distributed auction mechanism shown in Algorithm
2 to assign the targets in Tq to the vehicles in Rq. After at most |R| iterations
of synchronized communications as shown in lines 10 to 17 of Algorithm 2, all
the vehicles in R reach consensus on the bid list cj keeping the minimum travel
cost for the vehicles to visit each unassigned target in T u

q and on the βj recording
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the corresponding vehicles with the minimum travel time. Then, at line 19 of the
algorithm, the target r⋆ with the smallest travel cost among the unassigned target
set T u

q is chosen. At line 20, we check whether j is the vehicle with the smallest
travel cost to visit r⋆ and update the targets assigned to j according to line 21 if j
wins r⋆. Afterwards, the auction process continues with the unassigned target set
T u
q being updated as line 23 of Algorithm 2. Thus, all the targets in Tq are assigned

to the vehicles in Rq after at most |Tq||R| synchronized communication iterations.
The proof for the convergence of the targets assigned to each vehicle guided

by the DTAA to those of the targets in the vehicle’s arborescence resulting from the
MCGA is as follows. From the analysis just now, for the DTAA the target with the
smallest travel cost among the unassigned targets in the current T u

q is assigned to
the vehicle with the smallest travel cost after at most |R| synchronized communi-
cations. That process is in fact the same as the target election operation in lines
3 and 4 of Algorithm 1. The arborescence for each vehicle in Rq is obtained by
breaking the zero-weighted edges connecting arbitrary two vehicles in the MCGA
of Gq obtained by Algorithm 1. Herein, the statement is proved.

3.6.2 Worst-case performance guarantee

Duplicating each directed edge of the arborescence for each assigned vehicle inRq

but with the opposite direction, we can construct a Eulerian graph for each vehicle
(this is inspired by the multi-vehicle algorithm [67]). Let fdaq be the sum of all the
edge weights of all the arborescences for the vehicles in Rq after duplicating their
directed edges where fda =

∑|A|
q=1 f

da
q .

Lemma 3.6. It holds that 1 6 fda/fo, and fda/fo 6 2 when the travel cost matrix
is symmetric.

Proof. We first prove that 1 6 fdaq /foq . To prove the statement, similar to the multi-
vehicle algorithm operating on undirected graphs [67], we can obtain an open TSP
route for each vehicle based on the corresponding Eulerian graph. As the directed
edges satisfy the inequality in Remark 3.1, the total travel time of each vehicle in
Rq is at most the sum of all the edge weights in the duplicated arborescence for
the vehicle [67]. Thus, the total travel time of all the vehicles in Rq is not greater
than the sum of all the edge weights of the duplicated generalized arborescences
for the vehicles in Rq. As the total travel time of each feasible solution is an
upper bound for the optimal solution, we get foq 6 fdaq . As fda =

∑|A|
q=1 f

da
q and

fo =
∑|A|

q=1 f
o
q , it holds that fo 6 fda.

When the travel cost matrix of G is symmetric, Gq is symmetric. Thus, fdaq =

2faq as fdaq is the sum of all the edge weights of the duplicated generalized ar-



3.6. Performance analysis of DTAA 39

borescence. In view of faq 6 foq in the proof of Theorem 3.4, it follows that∑|A|
q=1 f

da
q 6 2

∑|A|
q=1 f

o
q . The proof is complete.

After the targets in Tq being assigned to the vehicles in Rq for each q ∈ A,
the marginal-cost-based target ordering principle proposed in §3.5.2 is used to put
the targets into sequence. These two steps lead to the DTAA. Let fDTAA

q be the
total travel time for the vehicles in Rq guided by the DTAA to visit all the targets
in Tq where the vehicles’ total travel time to satisfy all the visiting demands of
the targets in T is fDTAA. We are now able to present the worst performance
guarantee of the DTAA.

Theorem 3.7. The task assignment algorithm DTAA guarantees that fDTAA 6 fda.

Proof. We first prove that fDTAA
q 6 fdaq , ∀q ∈ A. The proof is conducted by

induction. In Theorem 3.5, the assignment of the targets in each Tq resulting
from the DTAA is shown to converge to that of the generalized min-cost arbores-
cence of Gq,∀q ∈ A. Let fdaqj be the sum of all the edge weights of the dupli-
cated arborescence for vehicle j ∈ Rq that can visit targets in Tq,∀q ∈ A. Then,
fdaq =

∑
j∈Rq

fdaqj . The first target r⋆ to be inserted in oj for the DTAA is deter-
mined by (3.8). It is straightforward to see that r⋆ is the same as the first target
inserted in the arborescence for vehicle j according to line 3 of Algorithm 1. Thus,
fDTAA
qj1 6 fdaqj1 as fDTAA

qj1 = fdaqj1, where the subscripts 1 and j are associated with
the total travel time for vehicle j to visit the first target ordered in λj .

Now suppose the first |oj | − 1 targets inserted in oj and those inserted in the
arborescence for vehicle j are the same and fDTAA

qj|oj |−1 6 fdaqj|oj |−1, where oj con-
tains all the targets in the end assigned to vehicle j. As the inequality specified
in Remark 3.1 holds for the optimal travel times between the vertices in G and
according to (3.10), for the DTAA the marginal travel time incurred by inserting
the last target r of oj into λj is

δfDTAA
qj = min

1<k6|λj |+1
{t(λj ⊕k r)− t(λj)}

= min{ min
k6|λj |−1

(t(λkj , r) + t(r, λk+1
j )− t(λkj , λk+1

j )),

t(pj , r) + t(r, λ1j )− t(pj , λ1j ), t(λ
|λj |
j , r)}

6 min
k6|λj |−1

{t(λkj , r) + t(r, λkj ), t(r, λ
k+1
j ) + t(λk+1

j , r)}, (3.12)

where pj is the index of vehicle j’ initial location and λkj is the kth target on
the ordered target list λj . On the other hand, considering the travel time cost
on duplicating the edge of the min-cost arborescence, the minimum travel time
incurred by inserting the last target r into the arborescence for vehicle j is
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δfdaqj = t(r, λk
⋆

j ) + min
k6|λj |

t(λkj , r), (3.13)

where k⋆ = argmink6|λj | t(λ
k
j , r). It then follows that δfDTAA

qj 6 δfdaqj .
Combining (3.12) and (3.13) and in view of fDTAA

qj|oj |−1 6 fdaqj|oj |−1, we get

fDTAA
qj|oj | = fDTAA

qj|oj |−1 + δfDTAA
qj

6 fdaqj|oj |−1 + δfdaqj . (3.14)

As fdaqj = fdaqj|oj |−1+ δf
da
qj|oj |, it holds that fDTAA

qj|oj | 6 fdaqj|oj | for each vehicle j. Thus,
we get

∑
j∈Rq

fDTAA
qj 6

∑
j∈Rq

fdaqj , which proves fDTAA
q 6 fdaq .

As R =
∑|A|

q=1Rq where Rq ∩ Rp = ∅ for ∀q ̸= p, it is straightforward to

observe that fDTAA =
∑|A|

q=1 f
DTAA
q . Thus, fDTAA 6

∑|A|
q=1 f

da
q . The proof is

complete.

Remark 3.8. Theorem 3.7 gives the worst case performance of DTAA compared with
the optimal solution as fda/fo, which generalizes the upper bound for the task assign-
ment problem with a symmetric cost matrix in [43]. Furthermore, based on Lemma
3.6 and Theorem 3.7, the upper bound fda/fo is 2 if the cost matrix is symmetric.

Now we have presented all the theoretical results of this chapter. In the fol-
lowing section, we carry out simulation studies.

3.7 Simulations

In this section, Monte Carlo simulations are carried out to test the proposed al-
gorithms compared with a GA which is a popular heuristic algorithm for the VRP
[46]. For each pair of target subset Tq and the corresponding vehicle subset Rq,
q ∈ {1, · · · , |A|}, the GA encodes each target in Tq as a numbered gene and
inserts |Rq| − 1 marker genes into the target genes. Then, each chromosome
represents a candidate solution to the assignment of the targets in Tq. The GA
employs the widely used tournament selection because of its efficiency and sim-
plicity, which preserves gene diversity while guaranteeing all individuals might be
selected [2]. The number of chromosomes in the GA for each Tq is empirically set
as 3(|Tq|+ |Rq|), and the crossover rate and mutation rate for the GA are 0.9 and
0.1. The GA terminates at the maximal iteration number 350. All the experiments
have been performed on an Intel Core i5 − 4590 CPU 3.30 GHz with 8 GB RAM,
with the algorithms compiled by Matlab under Windows 7. The solution quality of
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Figure 3.4: The average performance of the algorithms for 10 vehicles under dif-
ferent heterogeneities |A| to satisfy the visiting demands of 50 target locations in
the drift field.

each task assignment algorithm is quantified by

q =
f

fa
, (3.15)

where f is the objective value in (3.1) and fa is a lower bound on the optimal
solution of the problem as shown in Theorem 3.4.

The task assignment algorithm DTAA and GA are first integrated with the
designed path planning algorithm to assign 10 vehicles under different hetero-
geneities |A| with v = 1 to satisfy the visiting demands of 50 target locations
in a square drift field with edge length 103m and v⃗c = 10−3[0.3x + 0.2y,−0.2x +

0.3y]T . In the field, there are three static rectangular obstacles whose positions are
{(x, y)|(x, y) ∈ [150 300] ∗ [100 120] ∪ [400 420] ∗ [350 500] ∪ [600 750] ∗ [600 620]}.
Under each |A| ∈ {1, 3, 5, 7, 10}, 50 scenarios for each set of the initial positions
of the targets and vehicles are randomly generated while the positions are located
outside the obstacles. The visiting demands of each target and the capability of
each vehicle are randomly generated while the vehicle capabilities can satisfy all
the targets. The average q of the solutions resulting from the algorithms under
different |A| are shown in Fig. 3.4, and the average variance of q and the average
computation time of the algorithms are shown in Table 3.1 and Table 3.2, respec-
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Table 3.1: The average variances of the solution qualities q of the algorithms
on 50 scenarios for the task assignment problem under different instances (I) and
different heterogeneities |A| where n50m10 means 10 vehicles need to satisfy the
visiting demands of 50 target locations.

HHHHHI
|A|

1 3 5 7 10

n50m10
GA 0.4975 0.0210 0.0036 0.0025 0.0015

DTAA 0.0035 0.0030 0.0024 0.0024 0.0014

n70m10
GA 0.0515 0.1015 0.0453 0.0257 0.0018

DTAA 0.0026 0.0017 0.0012 0.0013 0.0009

n90m10
GA 0.0297 0.1086 0.0700 0.0570 0.0262

DTAA 0.0025 0.0013 0.0011 0.0009 0.0013

Table 3.2: The average corresponding computation time (s) of the algorithms to
get the solution to the task assignment problem under different heterogeneities
|A| and different instances (I).

HHHHHI
|A|

1 3 5 7 10

n50m10
GA 37.04 41.12 49.66 58.27 72.74

DTAA 0.19 0.32 0.46 0.60 0.82

n70m10
GA 65.06 81.63 105.94 128.53 156.09

DTAA 0.29 0.48 0.71 0.93 1.25

n90m10
GA 104.55 134.19 172.45 213.34 273.92

DTAA 0.38 1.19 2.29 3.20 4.40

tively. First, the average q of the DTAA displayed in Fig. 3.4 is within 1.3 times
of the optimal under different |A| while the average q of the GA decreases when
increasing |A|, which shows stable performance of the DTAA. When |A| increases,
the number of targets within each target subset Tq, q ∈ {1, · · · , |A|}, and the num-
ber of vehicles within each vehicle subset Rq generally decrease, thus leading to
a smaller problem size for assigning the targets in each Tq to the vehicles in Rq.
The reason that GA generally performs better when |A| increases might due to the
resulting smaller problem size. Second, the DTAA far betters than the GA when
|A| = 1 while the GA is competitive with the DTAA with the increase of |A|. How-
ever, Table 3.2 shows that the average computation time of the GA increases with
the increase of |A|, which far exceeds those of the DTAA. The phenomenon indi-
cates that the DTAA is more scalable than the GA. The computation time increases
with a larger |A| as some target locations need to be visited more than once by
vehicles with different capabilities and more visiting demands might occur when
increasing |A|. Thus, more computation time is needed to find solutions when in-
creasing |A|. The average variances of the solution qualities q of the DTAA is also
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Figure 3.5: The average performance of the algorithms for 10 vehicles under dif-
ferent heterogeneities |A| to satisfy the visiting demands of 70 target locations in
the drift field.

relatively smaller than those of the GA under different |A| for n50m10 as shown
in Table 3.1, which implies the stable feature of the DTAA. The instance n50m10

means 10 vehicles need to satisfy the visiting demands of 50 target locations.
We have also tested the DTAA and the GA on the instances with larger problem

sizes where 10 vehicles under different |A| need to satisfy the visiting demands of
70 and 90 target locations respectively in the same drift field. For each instance,
simulations on 50 scenarios have been performed for the problem with each |A| ∈
{1, 3, 5, 7, 10}. The average q of the solutions are shown in Fig. 3.5 and Fig. 3.6,
and the variances of q and the average computation times of the algorithms are
shown in Table 3.1 and Table 3.2, respectively. The average q of the DTAA under
each |A| shown in Fig. 3.5 and Fig. 3.6 are within 1.5 times of the optimal as those
in Fig. 3.4, which displays the satisfying and stable performance of the DTAA. The
changing trends of the average q of the GA shown in Fig. 3.5 and Fig. 3.6 are
generally the same as those shown in Fig. 3.4, which decreases with the increase
of |A|. However, the GA becomes worser with an increase of problem size from
n70m10 to n90m10, where the DTAA far betters the GA under each |A| as shown
in Fig. 3.6. In addition, Table 3.2 shows that the mean computation times of the
DTAA on n70m10 and n90m10 do not increase too much compared with those
on n50m10 while that is not the case for the GA, which shows the scalability of
the DTAA. Furthermore, in Table 3.1 the variances of q of the algorithms decrease
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Figure 3.6: The average performance of the algorithms for 10 vehicles under dif-
ferent heterogeneities |A| to satisfy the visiting demands of 90 target locations in
the drift field.

when |A| increases, which might due to less cooperation among the vehicles when
increasing their heterogeneities.

3.8 Conclusion

This chapter has investigated the task assignment problem in which multiple dis-
persed heterogeneous vehicles need to satisfy the visiting demands of a set of
target locations in a time-invariant drift field with obstacles. We have proved the
NP-hardness of the task assignment problem. A path planning method has been
designed to enable the vehicles to move between two prescribed locations in a
drift field with minimal time while avoiding any obstacle. The travel cost matrix
resulting from the path planning method provides the route information for the
target location assignment. In addition, a distributed task assignment algorithm
has been proposed which enables the vehicles to cooperate based on local infor-
mation. The task assignment algorithm guarantees that all the visiting demands
of the targets are satisfied within the total travel time, which is at most twice of
the optimal one when the cost matrix is symmetric.



Chapter 4

Communication-constrained multi-vehicle
task assignment

THIS chapter investigates the task assignment problem in which multiple dis-
persed heterogeneous vehicles/robots need to visit a set of target locations

while trying to minimize the vehicles’ total travel distance. Each vehicle initially
has the position information of all the targets and of those vehicles that are within
its limited communication range, and each target demands a vehicle with some
specified capability to visit it. We propose a decentralized auction algorithm which
first employs an information consensus procedure to merge the local information
carried by each communication-connected vehicle subnetwork. Then, we apply a
marginal-cost-based strategy to construct conflict-free target assignments for the
communication-connected vehicles. When the communication network of the ve-
hicles is not connected, we demonstrate that the vehicles’ total travel distance
might in fact increase when their communication range grows, and more impor-
tantly such a somewhat counterintuitive fact holds for a range of algorithms. Fur-
thermore, the proposed algorithm guarantees that the total travel distance of the
vehicles is at most twice of the optimal when the communication network is ini-
tially connected. Finally, Monte Carlo simulation results demonstrate the satisfy-
ing performance of the proposed algorithm.

4.1 Introduction

Task assignment for a team of vehicles to visit a set of targets is to assign each tar-
get to some properly chosen vehicle, which can be achieved by either centralized
or decentralized algorithms [41]. More specifically, the vehicle routing problem
(VRP), which is NP-hard, has given rise to a number of centralized algorithms, in-
cluding exact algorithms [7, 52], and heuristic algorithms [24, 66]. The VRP setup
considered in [75] is that a fleet of vehicles needs to deliver products from one or
several depots to a group of dispersed customers. Furthermore, a vacancy chain
scheduling was developed to formalize vehicle interactions in [15]. A genetic al-
gorithm was integrated with the Dubins car model in [21] for multi-UAV target
assignment where the UAVs’ limited turning radius was considered. Centralized
algorithms can achieve optimal or near-optimal assignments; however, in dynamic
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environment they require persistently reliable communication between the central
server and each vehicle to obtain global information. Note that some multi-vehicle
task assignment problems have been shown to be NP-hard [41], where high com-
putation capacity is demanded for the central server. Consequently, centralized
methods are not scalable with the growing numbers of vehicles and/or targets,
and not suitable for the situation where vehicles are subject to local, and possibly
outdated, information due to imperfect communication.

In parallel, decentralized algorithms have also been developed to enable each
vehicle to plan its route [1, 17], and there are some investigation on task as-
signment for robots under limited communication ability [29, 72, 81, 83]. When
robots are under limited communication range and potential malfunctions, a co-
operative backoff adaptive scheme was proposed in [29] for the task allocation
where the completion of one task might require the cooperation of multiple robots.
In [72], monotonic algorithms were proposed to minimize the time when the last
target location was occupied by a robot under limited communication range. Later
on, decentralized algorithms were designed in [81] to minimize the robots’ total
travel distance until every target location was occupied by one robot subject to
limited communication and sensing ranges. However, the numbers of robots and
targets in [72] and [81] are equal, and consequently it is always logical for a robot
to stop moving upon reaching its target. In recent years, auction-based methods,
known to be computationally efficient, are popular for solving the task assignment
problem [13, 18, 43, 44, 51, 67]. For the static task assignment of homogeneous
robots, the auction-based allocation algorithm proposed in [43] guarantees that
the robots’ total travel cost is at most twice of the optimal assuming all the robots
are communication-connected (CC). In [44], several Euclidean-supported auction
algorithms were designed for optimizing different team objectives for which the
theoretical performance of the algorithms has been provided accordingly. In [18],
survey on the market-based multi-robot coordination approaches was presented
where the main principles on auctions are discussed. Luo et al. [51] presented a
distributed auction-based algorithm for the multi-robot task assignment where the
tasks have to be completed within given deadlines. The auction-based algorithm
has an approximation ratio of 2 for the problem in which the payoff for completing
a task is independent of the others. Under the assumption of connectivity of the
communication network, an auction algorithm, namely the consensus-based bun-
dle algorithm (CBBA), was designed for multi-agent task allocation [13]. A robot
using CBBA bids for a task based on the cost incurred by inserting the task into
the robot’s target bundle. Thus, the assignment of a task is heavily affected by the
task’s inserting sequence. As a result, CBBA needs to release all the tasks after the
out-bid task in the bundle list. Furthermore, the performance of CBBA is guaran-
teed if the cost function of assigning each task leads to diminishing marginal gain,
which means that the value of a task does not increase as other tasks are added
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to the bundle list before this task [13]. In [83], the proposed heuristic distributed
algorithm (HDA) changes the assignment of a target based on the significance and
the marginal significance of a target where the significance of a target is defined
as the cost saved by removing the target from the corresponding position of the
ordered target list containing the target, and the marginal significance of a target
for a vehicle, currently not containing the target, is the smallest cost for inserting
the target into the current ordered target list of the vehicle. For each target on the
route of a vehicle, the vehicle will release the target if the significance of the target
is larger than its marginal cost while another vehicle with the smallest marginal
significance for inserting the target will take over the target. The HDA has shown
its better performance over the CBBA for search and rescue task assignment of
multiple heterogeneous vehicles in [83].

Motivated by the existing literature just mentioned, our research focuses on
the more realistic situation when the communication topology of the vehicles dy-
namically changes and might not be connected due to the vehicles’ movement,
and the number of targets is greater than that of vehicles. To be more precise,
a fleet of randomly dispersed heterogeneous vehicles under limited communica-
tion range needs to visit several target locations while trying to minimize their
total travel distance. Each target location requires to be visited by a vehicle with
a special capability. As in [72] and [81], each vehicle is assumed to know at
the beginning the positions of all the targets, and the positions of those vehicles
that are within its limited communication range. Different from the auction-based
task assignment algorithms discussed above, the communication network of the
vehicles here can be arbitrary, and in particular is not required to be connected.
Since the communication network of the vehicles might not be connected, the
challenge is how to make those CC vehicles cooperate to ensure all the targets to
be visited based on their knowledge of the local, possibly outdated, environmental
information. The other interesting question we try to answer is whether a longer
communication range of the vehicles always brings a better performance of the
vehicles. A novel decentralized auction algorithm (DAA) is proposed which ex-
ploits the marginal inserting cost concept. The main contributions of this chapter
are as follows. Firstly, for each CC vehicle subgroup that appears as the vehicles
move around, DAA leads to the non-increasing projected total travel distance while
guaranteeing all the target locations to be visited using the vehicles’ local informa-
tion. For DAA, we investigate what information should be carried by each vehicle,
what information carried by each vehicle should be communicated to its directly
CC vehicles through local communication, for each vehicle how to merge the re-
ceived local, possibly outdated, information, and how to coordinate the vehicles
in each CC vehicle subgroup to guarantee that all the targets will be visited within
a computable maximal total travel distance. This is an extension to the existing
auction-based task assignment studies, which in general assume that the commu-
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nication network of the vehicles is always connected. Secondly, we find that the
vehicles might have a greater total travel distance when they have a longer com-
munication range, which holds for a range of algorithms. Lastly, it is analytically
proven that the solution resulting from DAA is the same as some locally centralized
auction algorithms, and the total travel distance of the vehicles is upper bounded
by twice of the optimal when the communication network is initially connected.

The rest of this chapter is organized as follows. In Section 4.2, the formulation
of the task assignment problem is presented. Section 4.3 studies the decentralized
auction algorithm. We present Monte Carlo simulation results in Section 4.4 and
conclude the chapter in Section 4.5.

4.2 Problem Statement

Consider a set of randomly dispersed heterogeneous vehicles R = {1, · · · ,m} that
is employed in the plane to efficiently visit a set of target locations T = {1, · · · , n}
where n > m. Each target q has an attribute aq ∈ A while each vehicle j has one
ability aj ∈ A with |A| 6 m. Target q can be visited by vehicle j if aq = aj as in
[78] and [83]. Several targets might have the same attribute and several vehicles
might have the same ability, while the union of all the vehicles’ abilities and the
union of all the targets’ attributes are the same A so that all the targets can be vis-
ited. Each vehicle is initially unaware of the existence of other vehicles employed
in the environment; however, it has the position information of all the targets in a
map and can sense the positions of the vehicles within its limited sensing range,
which for simplicity is assumed to be the same as the communication range.

The binary variable yqj is used to represent whether target q is assigned to ve-
hicle j. Each vehicle stops moving when knowing all of its assigned targets have
been visited, and restarts to move once new assignment arrives through commu-
nicating with other moving vehicles. We assume that all the vehicles move with
the unit speed. Then, the objective of the task assignment problem is to minimize

f =
∑
j∈R

dj , (4.1)

subject to ∑
j∈Rq

yqj > 1, ∀ q ∈ T , (4.2)

where dj is the total travel distance of vehicle j when all the targets are visited and
Rq contains the indices of all the vehicles having the ability matching the attribute
of target q.
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Remark 4.1. When |A| = 1, the task assignment problem is a variant of the VRP
[75]. When |A| = m, each vehicle differs from the other vehicles. Thus, the problem
can be reduced to m independent subproblems each being a variant of the traveling
salesman problem [36] if the vehicles are not subject to a limited communication
range.

4.3 Auction algorithm

In this section, we propose auction-based algorithms for solving the task assign-
ment problem. As the vehicles move around, the corresponding communication
topology of the network dynamically changes because the vehicles are subject to
limited communication range. We use r > 0 to denote the vehicles’ communica-
tion range, and use the binary variable gjk(t) to describe whether vehicle j can
directly communicate with vehicle k at time t, namely

gjk(t) =

{
1, if d(pj(t), pk(t)) 6 r,

0, otherwise,
(4.3)

where pj(t) is the index of the position where vehicle j is located at time t, and
d(pj(t), pk(t)) is the distance between the two vehicles.

To deal with the limited communication range, each vehicle j ∈ R carries an
information tuple Ij(t) = {j, pj(t), aj , βj(t), cj(t), oj(t), d(oj(t)), uj(t), sj(t)} with
Ij(t) ∈ R5n+4, where j is the vehicle’s unique ID, aj ∈ A is its ability, βj(t) is
an n-tuple whose qth component βjq(t) stores the ID of that vehicle assigned to
target q, cj(t) is an n-tuple whose qth component cjq(t) stores the incurred dis-
tance for vehicle βjq(t) to visit target q, oj(t) is an n-tuple, which keeps the indices
of all the ordered targets assigned to vehicle j at time t, d(oj(t)) is the projected
total distance for vehicle j to visit all the targets on the route oj(t), uj(t) is an
n-dimensional vector initialized as uj(0) = (0n)

T where ujk(t) stores the latest
time when a task reassignment is performed for a CC vehicle subgroup contain-
ing vehicles j and k, and sj(t) is an n-dimensional zero-one vector recording the
targets’ status, namely

sjq(t) =

{
1, if vehicle j knows target q has been visited,
0, otherwise.

(4.4)

4.3.1 Centralized auction algorithm

For each newly CC vehicle subnetwork, we first propose a centralized auction al-
gorithm (CAA) where all information tuples carried by the vehicles within the
subnetwork are first relayed to a local leader vehicle having the most one-hop
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neighbours. If there are several such potential leading vehicles, the leader is ran-
domly chosen from those vehicles.

Then, after collecting all available information, the local leader vehicle of the
CC vehicle subnetwork Ri(t) updates sj(t) for each vehicle j within the subnet-
work by

sjq(t) = ∨k∈Ri(t)skq(t), ∀j ∈ Ri(t), ∀q ∈ T , (4.5)

where ∨ denotes the logical “or” operator,Ri(t) is the subgroup i in which vehicles
are CC at time t. Then, based on sj(t), oj(t) is first updated by deleting the targets
known to have been visited,

oj(t) = oj(t) \ {q}, if sjq(t) = 1, ∀q ∈ oj(t). (4.6)

Afterwards, the projected travel distance d(oj(t)) of vehicle j is updated consider-
ing all the targets in oj(t) to be consecutively visited by vehicle j.

If vehicle subgroup Ri(t) has no new members compared with Ri(t− 1) or the
vehicles in Ri(t) have recently been CC with the vehicles in the same Ri(t) for
a task reassignment, the vehicles within the group perform their assigned tasks
without task reassignment. Otherwise, let the set Rij(t) ⊆ Ri(t) contain those
vehicles inRi(t) who own ability aj ∈ A. To deal with how to make CC vehicles in
Rij(t) coordinate based on their carried local information, a cooperative strategy
is designed. We use R1

ij(t) ⊆ Rij(t) to identify those vehicles in Rij who have
never been CC with any other vehicle with the ability aj before time t, and define
R2

ij(t) to be Rij(t) \ R1
ij(t). Then, the targets to be assigned to the vehicles in

Rij(t) are those in the set

Tij(t) =


op(t), if

∑
k∈R2

ij(t)
d(ok(t)) > d(op(t))

or R2
ij(t) = ∅, when R1

ij(t) ̸= ∅,∪
k∈R2

ij(t)

ok(t), otherwise,
(4.7)

where p = argmink∈R1
ij(t)

d(ok(t)). When the total travel distance incurred for
visiting all the targets on the routes of the vehicles in R2

ij(t) is larger than that
incurred by visiting all the targets in op(t), it holds that

∑
k∈R2

ij(t)
d(ok(t)) >

d(op(t)). What is more, if R2
ij(t) = ∅ and R1

ij(t) ̸= ∅, Tij(t) is set to op(t),
and otherwise Tij(t) contains all the unvisited targets on the routes of the vehicles
in R2

ij(t). The targets to be divided by all the vehicles in Ri(t) are the union of all
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the targets in each Tij(t),

Ti(t) =
∪

j∈Ri(t)

Tij(t). (4.8)

Afterwards, if any vehicles j, k ∈ Ri(t) satisfy aj = ak and ujk(t) ̸= maxuk(t),
CAA iteratively assigns the targets in Ti(t) to the vehicles in Ri(t) as follows.
Firstly, CAA determines the minimum marginal travel distance cjq(t) for insert-
ing each target q with attribute aq = aj of the current unassigned target set Ti(t)
into the current o′j(t), initially set as an empty vector, by

cjq(t) =

 d(pj(t), q), if o′j(t) = ∅,
min

l6|o′j(t)|+1
{d(o′j(t)⊕l q)− d(o′j(t))}, otherwise, (4.9)

where o′j(t) ⊕l q means to insert target q at the lth position of the target list o′j(t)
if o′j(t) ̸= ∅. Target q is inserted to the end of o′j(t) if l = |o′j(t)| + 1 where |o′j(t)|
is the length of o′j(t), and cjq(t) = ∞ if aq ̸= aj which means vehicle j lacks
the ability to visit target q. Then, the n-tuple marginal cost cj for each vehicle
j ∈ Ri(t) is updated as

cjq(t) = min
k∈Ri(t)

ckq(t), ∀q ∈ Ti(t). (4.10)

Then, CAA determines that vehicle j⋆ ∈ Ri(t) wins the target q⋆ ∈ Ti(t) by

(j⋆, q⋆) = argmin
(j,q)∈Ri(t)×Ti(t)

cjq(t). (4.11)

Vehicle j⋆ will update its o′j⋆(t) as

o′j⋆(t) =

{
{q⋆}, if o′j⋆(t) = ∅,
o′j⋆(t)⊕l⋆ q

⋆, otherwise,
(4.12)

where l⋆ = argminl6|o′
j⋆

|+1{d(o′j⋆(t)⊕l q
⋆) − d(o′j⋆(t))}. Meanwhile, Ti(t) is up-

dated to

Ti(t) = Ti(t) \ {q⋆}. (4.13)

The target assignment procedure continues until Ti(t) is empty.

The objective for the leader vehicle of each Rij(t) at time t is to minimize

f ′ij(t) =
∑

k∈Rij(t)

d(o′k(t)), (4.14)
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Algorithm 3 CAA for the leader vehicle s in each newly CC vehicle subgroupRi(t).

Input: Each vehicle j ∈ R carries a matrix Xj ∈ Rn∗(3n+3) where Xj(j, :) =
{j, pj(t), aj , oj(t), uj(t), sj(t)} and Xj(p, :) = (03n+3)

T if p ̸= j.
Output: Every target in the cooperative target set Ti(t) is assigned.
1: λ← 0, and Rc

s(t)←Rd
s(t), where for ∀k ∈ Rd

s(t), d(ps(t), pk(t)) 6 r.
2: while λ < n do
3: Send Xs and Rc

s(t) to each k ∈ Rd
s(t) \ {s}, and receive Xk and Rc

k(t) from k.
4: Rc

s(t)←Rc
s(t)

∪
Rc

k(t), ∀k ∈ Rd
s(t).

5: for every row w ∈ {1, ..., n} do
6: if Xs(w, :) = (03n+3)

T and Xk(w, :) ̸= (03n+3)
T then

7: Xs(w, :)← Xk(w, :).
8: end if
9: end for

10: λ← λ+ 1.
11: end while
12: Ri(t)←Rc

s(t), and vehicle s calculates Ti(t) by updating Xs through (4.5) to (4.8).
13: if ∃k, j ∈ Ri(t) satisfy aj = ak and ujk(t) ̸= maxuk(t) then
14: for the leader vehicle s do
15: o′j(t)← ∅,∀j ∈ Ri(t).
16: while Ti(t) ̸= ∅ do
17: Use (4.9) where o′j(t) is used to update cjq(t), ∀j ∈ Ri(t), ∀q ∈ Ti(t).
18: (j⋆, q⋆)← argmin(j,q)∈Ri(t)×Ti(t)

cjq(t).
19: if o′j⋆(t) = ∅ then
20: o′j⋆(t)← {q⋆}.
21: else
22: l⋆ ← argminl6|o′

j⋆
|+1 d(o

′
j⋆(t)⊕l q

⋆), o′j⋆(t)← o′j⋆(t)⊕l⋆ q⋆.

23: end if
24: Ti(t)← Ti(t) \ {q⋆}.
25: end while
26: Calculate f ′

ij(t) based on the new assignment o′j(t).
27: end for
28: if f ′

ij(t) > fij(t) then
29: The leader vehicle informs each j ∈ Ri(t) to keep its previous route oj(t).
30: else
31: λ ← 0, and the leader vehicle s updates Xs with o′j(t) and uj(t), ∀j ∈ Ri(t),

and each other vehicle j updates Xj with Xj = 0n∗(3n+3).
32: while λ < |Ri(t)| do
33: for every vehicle j ∈ Ri(t) do
34: Send Xj to each vehicle k ∈ Rd

j (t) \ {j}, and receive Xk from k.
35: for every row w ∈ {1, ..., n} do
36: if Xj(w, :) = (03n+3)

T and Xk(w, :) ̸= (03n+3)
T then

37: Xj(w, :)← Xk(w, :).
38: end if
39: end for
40: end for
41: λ← λ+ 1.
42: end while
43: Every vehicle j ∈ Ri(t) uses the updated Xj to update its oj(t) and uj(t).
44: end if
45: end if
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Figure 4.1: The flowchart of the centralized auction algorithm CAA.

where d(o′k(t)) is the total travel distance for vehicle k to visit all the targets in its
ordered target list o′k(t). The algorithm CAA used by the leader vehicle to assign
the cooperative targets in Tij(t) to the vehicles in Rij(t) is shown in Algorithm 3,
and the flowchart of CAA is shown in Fig. 4.1. For the task assignment problem,



54 4. Communication-constrained multi-vehicle task assignment

the longest travel distance of a vehicle occurs when the vehicle visits all the target
locations that it can visit without cooperation with any other vehicle. Thus, each
vehicle j initially inserts all the targets it can visit into its route oj(t) by using the
CAA where Ri(t) = {j} and Ti(t) = T .

For the CC vehicles in Rij(t), they keep their previous target assignment if
the total travel distance f ′ij(t) resulting from the new assignment is greater than
the previous total travel distance fij(t). Otherwise, once a locally centralized task
assignment has been completed inRij(t), each vehicle k ∈ Rij(t) updates its route
ok(t) using o′k(t). Then, the leader vehicle updates ujk(t),∀j, k ∈ Ri(t), to

ujk(t+ 1) =

{
t, if f ′ij(t) < fij(t),
ujk(t), otherwise.

(4.15)

4.3.2 Decentralized auction algorithm (DAA)

In this section, we design a decentralized auction algorithm (DAA) where each
vehicle within a newly CC vehicle group updates its information tuple based on
direct communication with its neighbors. DAA consists of three phases, which
are information consensus for CC vehicles, target assignment for the vehicles, and
assignment check. For each vehicle j, it initially inserts all the targets it can visit
into its target list oj(t = 0) by using CAA shown in Algorithm 3 where Ri(t) = {j}
and Ti(t) = T .

The first phase of DAA, shown in Algorithm 4, is to make each vehicle in Ri(t)

reach consensus on the cooperative targets Ti(t) and the indices of the CC vehicles
in Ri(t) based on their carried information matrix Xj ∈ Rn∗(n+4) where the jth
row of Xj is Xj(j, :) = [j, aj , uj(t), pj(t), d(oj(t))] and Xj(p, :) = (0n+4)

T if p ̸= j.
We use Xj(w, 1 : l), w ∈ {1, ..., n}, l ∈ {1, ..., n + 4}, to denote the first to the lth
elements of the wth row of Xj , and Xj(:, 1 : l) is the sub-matrix containing the
first l columns of the matrix Xj . Let the set Rd

j (t) contain all those vehicles that
are directly CC with vehicle j at time t, where the distance d(pj(t), pk(t)) between
vehicle j ∈ Ri(t) and any vehicle k ∈ Rd

j (t) is no larger than their communication
range r, and initialize Rc

j(t) to Rd
j (t) as shown in line 1 of Algorithm 4. In Phase

1 of DAA, each vehicle j first updates its sj(t) and Rc
j(t) according to lines 1

to 12 shown in Algorithm 4. Then, in line 14 of Phase 1, vehicle j updates its
projected total travel distance d(oj(t)) after deleting in oj(t) the targets known to
have been visited in line 13. Afterwards, vehicle j checks whether some of the
CC vehicles have the same ability and whether they have not been CC recently
in line 15 of the Phase 1. If both are yes, vehicle j continues communicating
with other vehicles in Rd

j (t) to get the pk(t), and the updated d(ok(t)) for each
k ∈ Ri(t) as shown in lines 15 to 26 of Algorithm 4. Let the set IDsj = {p} if
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Algorithm 4 DAA Phase 1 for information consensus of each j, ∀j ∈ R at time t.
Input: Vehicle j carries a matrix Xj ∈ Rn∗(n+4) with Xj(j, :) ←
{j, aj , uj(t), pj(t), d(oj(t))}, an array Rc

j(t) ∈ Rn, Ij(t) and r.
Output: The cooperative target set Ti(t) and CC vehicle set Ri(t).
1: λ← 0, and Rc

j(t)←Rd
j (t) where for ∀k ∈ Rd

j (t), d(pj(t), pk(t)) 6 r.
2: while λ < n do
3: Send Xj(:, 1 : (n+ 2)), Rc

j(t) and sj(t) to each vehicle k ∈ Rd
j (t) \ {j}.

4: Receive Xk(:, 1 : (n+ 2)), Rc
k(t) and sk(t) from each vehicle k ∈ Rd

j (t) \ {j}.
5: Rc

j(t)←Rc
j(t)

∪
Rc

k(t),∀k ∈ Rd
j (t), sjq(t)← ∨k∈Rd

j (t)
skq(t), ∀q ∈ T .

6: for every row w ∈ {1, ..., n} do
7: if Xj(w, :) = (0n+4)

T and Xk(w, :) ̸= (0n+4)
T then

8: Xj(w, 1 : (n+ 2))← Xk(w, 1 : (n+ 2)).
9: end if

10: end for
11: λ← λ+ 1.
12: end while
13: Ri(t)←Rc

j(t), and oj(t)← oj(t) \ {q}, if sjq(t) = 1, ∀q ∈ oj(t).
14: Update the (n+ 4)th position in jth row of Xj with d(oj(t)) according to oj(t).
15: if ∃k, j ∈ Ri(t) satisfy aj = ak, and ujk(t) ̸= maxuk(t), ∀k ∈ Ri(t) then
16: λ← 0.
17: while λ < |Ri(t)| do
18: Send Xj(:, (n+ 3) : (n+ 4)) to each vehicle k ∈ Rd

j (t) \ {j}.
19: Receive Xk(:, (n+ 3) : (n+ 4)) from each vehicle k ∈ Rd

j (t) \ {j}.
20: for every row w ∈ {1, ..., n} do
21: if Xj(w, (n+3) : (n+4)) = (02)

T and Xk(w, (n+3) : (n+4)) ̸= (02)
T then

22: Xj(w, (n+ 3) : (n+ 4))← Xk(w, (n+ 3) : (n+ 4)).
23: end if
24: end for
25: λ← λ+ 1.
26: end while
27: Use Xj to calculate the IDsj of the vehicle set according to (4.7) in order to calculate
Tij(t) for each Rij(t) ⊆ Ri(t), and let IDs←

∪
Rij(t)⊆Ri(t)

IDsj .
28: if j ∈ IDs then
29: βjq(t)← j, ∀q ∈ oj(t), and βjq(t)← 0, ∀q ∈ T \ oj(t).
30: else
31: βjq(t)← 0, ∀q ∈ T .
32: end if
33: λ← 0.
34: while λ < |Ri(t)| do
35: Send βj(t) to each vehicle k ∈ Rd

j (t) \ {j}, and receive βk(t) from k.
36: for each w ∈ {1, ..., n} and k ∈ Rd

j (t) do
37: if βjw(t) = 0 and βkw(t) ̸= 0 then
38: βjw(t)← βkw(t).
39: end if
40: end for
41: λ← λ+ 1.
42: end while
43: Update Ti(t) in (4.8) with Ti(t)←

∪
q∈T q, βjq(t) ̸= 0.

44: end if
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Algorithm 5 DAA Phase 2 for target assignment of vehicle j,∀j ∈ Ri(t), when
some of the vehicles in Ri(t) are the same and ujk(t) ̸= maxuk(t),∀k ∈ Ri(t).
Input: The target set Ti(t) and vehicle set Ri(t).
Output: A new target list o′j(t) is produced.
1: o′j(t)← ∅.
2: while Ti(t) ̸= ∅ do
3: for every target q ∈ Ti(t) do
4: if aq = aj then
5: if o′j(t) = ∅ then
6: cjq(t)← d(pj(t), q).
7: else
8: cjq(t)← min

l6|o′j(t)|+1
{d(o′j(t)⊕l q)− d(o′j(t))}.

9: end if
10: else
11: cjq(t)←∞.
12: end if
13: βjq(t)← j.
14: end for
15: λ← 0.
16: while λ < |Ri(t)| do
17: Send cj(t) and βj(t) to vehicle k ∈ Rd

j (t) \ {j}.
18: Receive ck(t) and βk(t) from vehicle k ∈ Rd

j (t) \ {j}.
19: for every target q ∈ Ti(t) do
20: k⋆ ← argmink∈Rd

j (t)
ckq(t).

21: cjq(t)← ck⋆q(t).
22: βjq(t)← βk⋆q(t).
23: end for
24: λ← λ+ 1.
25: end while
26: q⋆ ← argminq∈Ti(t)

cjq(t).
27: if j = βjq⋆ then
28: if o′j(t) = ∅ then
29: o′j(t)← {q⋆}.
30: else
31: l⋆ ← argminl6|o′j(t)|+1{d(o′j(t)⊕l q

⋆)− d(o′j(t))}.
32: o′j(t)← o′j(t)⊕l⋆ q⋆.
33: end if
34: end if
35: Ti(t)← Ti(t) \ {q⋆}.
36: end while

∑
k∈R2

ij(t)
d(ok(t)) > d(op(t)) in (4.7), and otherwise IDsj = R2

ij(t). Later on,
vehicle j calculates the set IDsj according to (4.7) through using Xj , and then
communicates with the other vehicles in Rd

j (t) to make the cooperative target set
Ti(t) reach consensus as shown in lines 27 to 43 of Algorithm 4.
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Algorithm 6 DAA Phase 3 for assignment check of vehicle j,∀j ∈ Ri(t), when
some of the vehicles in Ri(t) are the same and ujk(t) ̸= maxuk(t), ∀k ∈ Ri(t).
Input: Ri(t) and the assignment o′j(t), λ← 0.
Output: The total travel distance is nonincreasing.
1: Calculate the travel distance d(o′j(t)) based on o′j(t).
2: for every row w ∈ {1, ..., n} do
3: if w = j then
4: Xj(j, n+ 4)← d(o′j(t)).
5: else
6: Xj(j, n+ 4)← 0.
7: end if
8: end for
9: while λ < |Ri(t)| do

10: Send Xj(w, n+ 4) to each vehicle k ∈ Rd
j (t) \ {j}.

11: Receive Xk(w, n+ 4) from each vehicle k ∈ Rd
j (t) \ {j}.

12: for every row w ∈ {1, ..., n} do
13: if Xj(w, n+ 4) = 0 and Xk(w, n+ 4) ̸= 0 then
14: Xj(w, n+ 4)← Xk(w, n+ 4).
15: end if
16: end for
17: λ← λ+ 1.
18: end while
19: f ′

ij(t)←
∑

k∈Rij(t)
d(o′k(t)).

20: if f ′
ij(t) > fij(t) then

21: Vehicle j keeps its previous route oj(t).
22: else
23: oj(t)← o′j(t).
24: end if

Then, DAA iteratively assigns the targets in Ti(t) in Phase 2 shown in Algorithm
5. During each iteration, in lines 3 to 14 of Phase 2, each vehicle j updates its
cjq(t) for each target q in the current Ti(t). In lines 15 to 25 of Phase 2, vehicle
j compares the bids coming from its directly CC neighbors for each target q in
Ti(t), and then updates its cj and βj according to the bids of the vehicles in Rd

j (t).
Later on, in line 27, vehicle j checks the ID of the vehicle that takes over the
target with the smallest inserting cost among those in the current Ti(t) according
to the updated βj(t), and then updates its newly built route o′j(t) if the target
is assigned to j according to lines 28 to 33 of Phase 2. Phase 2 requires more
communication among the CC vehicles, but less computation capacity for each
vehicle as the computation demand is distributed to each vehicle compared with
CAA. A new target list o′j(t) is constructed from scratch for each CC vehicle j in line
1 of Algorithm 5, which differs from the CBBA [13] and HDA in [83]. The marginal
cost cjq(t) is the smallest distance incurred for vehicle j to insert target q into o′j(t)
if vehicle j has the ability to visit target q, i.e., aj = aq, and otherwise is infinity as
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Figure 4.2: The flowchart of the decentralized auction algorithm DAA.
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shown in lines 4 to 12 of Algorithm 5. Finally, using Algorithms 6 to check whether
the total projected travel distance f ′ij(t) resulting from the assignments obtained
in Phase 2 is better than the previous fij(t), each vehicle j ∈ Ri(t) updates its
route oj(t). The flowchart of DAA is shown in Fig. 4.2.

There are two reasons for constructing the target list for each CC vehicle from
scratch in Phase 2 of DAA. Firstly, the operation in (4.6) might delete some already
visited target located at the front of a target bundle, thus leading to the release
of all the remaining targets on the bundle according to CBBA. That is equivalent
to the construction of the target list from scratch. Secondly, the first target to be
inserted into a target list is vital to the following targets’ insertion as the marginal
cost of inserting a target is greatly affected by those targets that are already in the
target list based on (4.9).

Remark 4.2. Though the targets in each sub-target set containing the targets with the
same attribute can only be assigned to the vehicles with the corresponding ability, the
multi-vehicle task assignment problem cannot be decoupled completely into several
independent task assignment problems for homogeneous vehicles. The reason is that
different kinds of vehicles can share information for better coordination if they are
CC, and thus they are coupled through communication.

Now we discuss in more detail why our proposed algorithm DAA works.

4.3.3 Convergence of DAA

We first prove the convergency of DAA.

Lemma 4.3. During the operation of DAA, the following statements hold:
(i) Each target q ∈ T is assigned to at least one vehicle. The assignment may change,
but target q remains assigned to at least one vehicle until being visited;
(ii) For vehicle j ∈ R and target q, if sjq(t0) = 1 at some time t0, then sjq(t) = 1 for
all t > t0.

Proof. Based on the initialization of the route oj(t) for each vehicle j, the targets
initially assigned to each vehicle are those it can visit. As each vehicle has one
ability and the union of all vehicles’ abilities is A, every target in T is initially
assigned to at least one vehicle. Thus, if a vehicle has never been CC with any
other vehicle with the same ability, an arbitrary target assigned to it is on the
vehicle’s route unless being visited by the vehicle itself.

When several vehicles are CC, statement (i) follows from the cooperative strat-
egy shown in (4.7). We first consider the case when Tij(t) = op(t), where p =

argmink∈R1
ij
d(ok(t)). As vehicle p ∈ R1

ij(t) has never been CC with any other
vehicle with the same ability, an arbitrary target q with attribute aq = ap satisfies
q ∈ op(t) if q has not been visited by vehicle p.
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When Tij(t) =
∪

k∈R2
ij(t)

ok(t), target q is among the cooperative targets if q ∈

ok(t) for at least one vehicle k ∈ R2
ij(t). Otherwise, q must be on the route of

at least one other vehicle, say vehicle g, who has already exchanged information
with at least one of the vehicles in R2

ij(t). As q ∈ og(t), q will be among the
cooperative targets of a CC network if vehicle g is in the CC network according to
the analysis when q ∈ ok(t) and Tij(t) =

∪
k∈R2

ij(t)

ok(t). If vehicle g has not been

CC with other vehicles who can visit target q, q is still on the route of vehicle g
until being assigned to some other vehicle or being visited by vehicle g.

Based on the above analysis, an arbitrary unvisited target q with attribute aq ∈
A is either among the cooperative targets of a CC vehicle group Rij or on the
route of at least one vehicle g with ability ag = aq. Once the target is in the
cooperative target set Tij(t), it will be assigned among the CC vehicles until being
visited. Otherwise, it will be on the route of at least one of the vehicles who can
visit the target. Thus, statement (i) is proved.

Statement (ii) follows directly from the logical “or” operation of sj(t) in (4.5).
It can also be explained by the fact that once a target is visited and its status is
known by one vehicle, that vehicle will keep this information.

With these properties, we are ready to present the main result on DAA.

Proposition 4.4. For any given n,m ∈ N, DAA enables all the target locations to be
visited in finite time.

Proof. For vehicle j who is not initially CC with any other vehicle, it inserts all the
targets it can visit into its target list oj(0) using Algorithm 3 where Ri(t) = {j}
and Ti(t) = T at t = 0. If the vehicle cannot communicate with any other vehicle
with the same capability during its movement, it will keep moving until all the
targets on its route have been visited.

If the vehicle can communicate with other vehicles with the same ability, the
cooperative targets determined by (4.7) are assigned among the CC vehicles. Once
a target is assigned to a vehicle, it will be kept assigned until being visited based
on (ii) of Lemma 4.3. Thus, all the targets will be visited in finite time.

Formally, we say that a function f(x) is O(g(x)) if there are constants c and x′

such that f(x) 6 cg(x) for all x > x′.

Theorem 4.5. For each newly CC vehicle group, the following statements on the as-
signment obtained by DAA hold:
(i) The assignment converges to that of CAA;
(ii) At most (n+ 3m+ nm) synchronized iterations of communication are needed to
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achieve the assignment;
(iii) The computational running time complexity of DAA on calculating the assign-
ment is O(n2(n+m2));
(iv) The space complexity of DAA is O(n2 log n).

Proof. For statement (i), the proof is carried out by induction. The decentralized
DAA and the centralized CAA in essence use the same smallest marginal cost strat-
egy to assign the targets: in CAA a leader vehicle of each CC subnetwork assigns
the targets among the CC vehicles after collecting all the necessary information as
shown in Algorithm 3; in DAA each of the CC vehicles bids for a target by calcu-
lating its smallest marginal cost for inserting the target and then relays the bid to
every other CC vehicle. To prove the convergence of the decentralized DAA to the
centralized CAA, it suffices to prove that DAA has the same assignment with that
of CAA when the initial communication network topologies for the two algorithms
are the same. That is to say, if DAA is proven to converge to CAA under the same
initial communication network topology, the assignment resulting from DAA will
converge to that from CAA for an arbitrary initial communication network. Thus,
we only give the proof when all the vehicles are initially CC. After operating Phase
1 shown in Algorithm 4, the vehicles guided by DAA start bidding on the first tar-
get to be assigned among all the targets in T . In Phase 2 shown in Algorithm 5,
each vehicle updates its information tuple based on the information of those ve-
hicles within its communication range. According to lines 3 to 14 and 19 to 23 of
Algorithm 5, each vehicle in R bids on every target in T and the final marginal in-
serting cost of each target is the smallest bid by the vehicles. Then, the target with
the smallest marginal inserting cost will be assigned to the corresponding vehicle
according to lines 26 to 34 in Algorithm 5. That process is in fact the same as the
target election operation and inserting operation in lines 17 to 23 of CAA shown
in Algorithm 3; thus, the first targets assigned by CAA and DAA are the same.

Now suppose the first n−1 targets have the same assignments by CAA and DAA.
The last target, named q, will be assigned to the vehicle with the smallest insertion
marginal cost according to lines 17 to 23 of CAA shown in Algorithm 3. On the
other hand, in lines 3 to 14 of Phase 2 of DAA shown in Algorithm 5, every vehicle
j evaluates the marginal cost of inserting q, and updates its cjq to be the smallest
one after communicating with vehicle k satisfying d(pj(t), pk(t)) 6 r as shown
in lines 17 to 23 of Algorithm 5. It will cost at most m rounds of synchronized
communication to make cjq reach consensus. At this time, all vehicles in Ri(t)

agree that target q is assigned to the vehicle with the smallest insertion marginal
cost based on lines 17 to 23 of Algorithm 5. Thus, the last target is assigned to the
same vehicle by CAA and DAA respectively. Herein, the statement is proved.

Then, we prove that DAA produces a stable solution after at most (n+3m+nm)

synchronized iterations of communication. There are n targets to be assigned to
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m vehicles while each vehicle initially lacks the information on the number of the
vehicles employed as they are initially randomly distributed and constrained by
limited communication range. In Phase 1 of DAA shown in Algorithm 4, the in-
formation on the cooperative target set Ti(t) and CC vehicle set Ri(t) for vehicles
within each Ri(t) reaches consensus after at most 3n synchronized iterations of
communication as |Ri(t)| 6 n. In Algorithm 4, after at most n synchronized itera-
tions of communication, every vehicle j among each CC vehicle subgroup i knows
Ri(t) containing the indices of the vehicles that are CC in the subgroup, and has
the same sj(t) that saves the information on which targets have been known to
be visited through communicating with the other vehicles within the subgroup as
shown in lines 1 to 12 of Algorithm 4. Then, after deleting the targets known to
have been visited from its route oj(t) by each j, at most 2|Ri(t)| synchronized
iterations of communication are needed for j to calculate the cooperative target
set Ti(t) as shown in lines 16 to 43 of Algorithm 4. Thus, at most (n + 2m) syn-
chronized iterations of communication are needed to make Ti(t) and Ri(t) reach
consensus. Then, during each |Ri(t)| synchronized iterations of communication
as shown in lines 15 to 35 of Algorithm 5, DAA assigns one target in Ti(t) with
the smallest marginal inserting cost among the cooperative targets to a vehicle
as at most |Ri(t)| iterations of communication is required for all the vehicles in
Ri(t) to reach consensus on the cost incurred to visit each target. Thus, all the
targets in Ti(t) are assigned to the vehicles inRi(t) after at most nm synchronized
iterations of communication. Afterwards, to check whether the new assignment
for the vehicles in Ri(t) is better than their previous assignment, it costs at most
m synchronized communications to inform the projected travel distance d(o′j(t))
to all the vehicles in Ri(t) according to lines 9 to 18 in Phase 3 of DAA shown
in Algorithm 6. Consequently, the DAA produces a stable solution after at most
(n+3m+nm) synchronized iterations of communication for each new CC vehicle
group.

For statement (iii), we give the computational running time complexity of DAA
as follows. For the first Phase of DAA shown in Algorithm 4, the computational
running time complexity is O(n2m) which is mainly used for updating sj(t) in line
5 of the algorithm. In Phase 2 of DAA shown in Algorithm 5, updating cj(t) costs
most of the computational running time; in fact in the worst case, the maximum
computational running time of O(n3) is required to update cj(t) in lines 6 and 8,
and the maximum computational running time of O(n2m2) is required to update
cj(t) in line 21 of the algorithm. Finally, in the Phase 3 of DAA shown in Algorithm
6, O(n) running time is consumed to calculate d(o′j(t)) for each j ∈ Ri(t). Then
the total computational running time complexity of DAA is O(n2(n +m2)) where
the running time is dominated by Phase 2. Thus, the proof is complete.

Now we proceed to analyze the space complexity of DAA. For each vehicle
j, j ∈ R, as shown in Algorithm 4, it requires to store a matrix Xj ∈ Rn∗(n+4) to
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Figure 4.3: The routes for 4 homogeneous vehicles to visit 5 homogeneous targets
based on DAA, where the vehicles’ communication range is 28m and the arrows
are the travel directions of the routes. The total travel distance f is 156m.

record the information of the vehicles CC with j where at most (n+ 4) log n bytes
of computer space are needed to store the information on each row of Xj if each
variable of Xj is coded with logarithm to base 10. Then, at most O(n2 log n) bytes
of computer storage are needed for running DAA. Thus, the proof is complete.

We further investigate how the length of the communication range of the vehi-
cles affects the performance of DAA.

Remark 4.6. For the task assignment problem, a longer communication range of the
vehicles does not necessarily lead to a better performance for DAA.

We now illustrate the main argument for this remark. When several vehicles
are CC, they exchange and update their information tuples to adjust their routes.
As some targets may have already been visited by vehicles who are not CC, the
target information shared by the CC vehicles is local or even outdated, which fails
to reflect the targets’ current situation. As a result, the incomplete information
shared by the CC vehicles can lead to inefficient task assignments; for example, a
target already visited is still on the route of some vehicle.

One illustrating case of the task assignment resulting from DAA is shown in
Fig. 4.3 and Fig. 4.4 where 4 homogeneous vehicles with unit speed need to visit
5 homogeneous targets T = {1, · · · , 5} in a 100 × 100 m2 area. In Fig. 4.3, the
vehicles’ communication range is 28m, which makes vehicles 1 and 2 initially CC.
The routes of the four vehicles are p1(0) → 1 → 5 → 4, p2(0) → 2 → 3, p3(0) →
3 → 2 → 1 → 5 → 4, p4(0) → 4 → 5 → 1 → 2 → 3, where pi(0), i ∈ {1, · · · , 4},
is the index of vehicle i’ initial position. With the movement of vehicle 3, target
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Figure 4.4: The routes for 4 homogeneous vehicles to visit 5 homogeneous targets
based on DAA, where the vehicles’ communication range is 30m and the arrows
are the travel directions of the routes. The total travel distance f is 167m.

3 is first visited, and then vehicle 2 stops moving once it can communicate with
vehicle 3 since vehicle 3 is nearer to their cooperative target 2. Reaching target 2,
vehicle 3 stops moving since o3(t) is empty. When vehicle 1 can communicate with
vehicle 4, targets 4 and 5 have been visited and then the two vehicles stop moving
as their cooperative target set is empty. The total travel distance of the vehicles is
156m, where the travel distances of the four vehicles are 49m, 22m, 36m and 49m
respectively.

In Fig. 4.4, the vehicles’ communication range is increased to 30m, which
makes vehicles 1, 2 and 3 initially CC. After dividing the cooperative targets among
the CC vehicles based on DAA, we get the routes of the four vehicles p1(0)→ 1→
5, p2(0) → 2 → 3, p3(0) → 4, and p4(0) → 4 → 5 → 1 → 2 → 3. With
the movement of the vehicles, target 4 is first visited by vehicle 4. Then, vehicle
3 should not move to target 4 as target 4 is already visited. However, vehicle
3 continues moving towards target 4 since it lacks the latest target status until
becoming CC with vehicle 4. Afterwards, vehicle 3 and vehicle 4 stop moving
since their cooperative target set is empty based on (4.7). Vehicles 1 and 2 stop
moving when their assigned targets are visited. The total travel distance to visit
all the targets is 167m, where the travel distances of the four vehicles are 47m,
56m, 32m and 32m respectively. The performance of DAA on vehicles under a
longer communication range in Fig. 4.4 is worse than that shown in Fig. 4.3, thus
illustrating Remark 4.6.

It should be noted that Remark 4.6 holds for some other task assignment algo-
rithms as in [5] due to the vehicles’ limited communication range. In the following
subsection, we discuss the worst performance guarantee of DAA.
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Algorithm 7 The Prim algorithm [62].
Input: Positions of targets in T and vehicles in R.
Output: A minimum spanning tree (MST) of the graph G.
1: Initialize MST ←R.
2: while T ̸= ∅ do
3: (j⋆, p⋆)← argmin(j,p)∈MST×T d(j, p).
4: Add p⋆ in MST and connect it with j⋆ using an edge with length d(j⋆, p⋆) equating

to the distance between the two vertices.
5: T ← T \ {p⋆}.
6: end while

4.3.4 Worst performance analysis

For vehicles in each CC vehicle set Ri(t), they update their route information to
minimize the total travel distance of the connected vehicles.

Lemma 4.7. Each information updating for the CC vehicles guided by DAA makes
the projected total travel distance f in (4.1) non-increasing.

Proof. Guided by DAA, the CC vehicles in each Rij(t) re-assign the cooperative
targets if the task assignment reduces their total travel distance (4.14) according
to lines 20 to 23 of Algorithm 6. Otherwise, each vehicle j in Rij(t) only updates
sj(t), oj(t), and the corresponding d(oj(t)) based on their shared information,
which makes the projected total travel distance fij(t) in (4.14) non-increasing.
As fij(t) is a component of f in (4.1), f is non-increasing for each information
updating.

The analysis of the performance of the proposed DAA, as indicated by Lemmas
4.3, 4.7, Proposition 4.4, Theorem 4.5 and Remark 4.6, still applies when the
network is not initially connected.

Let G be a vehicle-target graph whose vertices contain all the vehicles’ initial
positions and the target locations. The weight for an edge connecting a vehicle
vertex with target vertex is the Euclidean distance between them if the vehicle has
the ability to visit the target, and is otherwise positively infinite. We assign zero
weight for the edges between each two vertices representing vehicles. We apply
the Prim algorithm [62], shown in Algorithm 7, to obtain a minimum spanning
tree (MST) of G that connects all the targets and the vehicles with the minimum
total edge weight, and use fMST to be the sum of all the edge weights of the MST.
Let fo be the optimal value for the objective function in (4.1) which is obtained
based on all necessary global information, and fDAA be the objective function in
(4.1) resulting from DAA.

Lemma 4.8. The optimal total travel distance fo is lower bounded by fMST .
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Proof. When |A| = 1, each vehicle can visit every target, thus leading G to be a
complete graph. If all the vehicles are initially CC, the task assignment problem
is in fact the one investigated in [67] without considering the vehicles’ minimum
turning radius. Based on [62, 67], we get fMST 6 fo when |A| = 1.

When |A| > 1, targets with the same attribute can be assigned to vehicles with
the corresponding ability. Thus, all the targets are first clustered to subgroups
where each subgroup contains the targets with the same attribute. For each target
cluster j, the vehicles with the corresponding ability to visit the targets are also
included. An MSTj of the graph Gj containing all targets and the assigned vehicles
in each cluster j can be constructed, where the total travel distance of the assigned
vehicles is lower bounded by fMSTj

[62]. Thus, the total travel distance of all the
vehicles is lower bounded by

∑
j fMSTj = fMST . Hence, the optimal total travel

distance is lower bounded by fMST .

From Lemma 4.8, we further guarantee the performance of DAA as follows.

Theorem 4.9. When all the vehicles are initially CC, DAA guarantees the total travel
distance fDAA 6 2fo.

Proof. Theorem 4.5 shows that the assignment of DAA converges to that of CAA
after at most (n+ 3m+ nm) synchronized iterations of communications. Thus, it
suffices to prove the statement through showing the performance of CAA.

The proof is conducted by induction. When all the vehicles are initially CC, the
targets are assigned by CAA according to line 18 of Algorithm 3 shown as

(j⋆, q⋆)← argmin
(j,q)∈R×T u

cjq(t), (4.16)

where the target set T u contains the unassigned targets and cjq(t) is determined
by (4.9). It is straightforward to find the first target chosen by CAA, which is
the same as the first target inserted in the MST according to line 3 of the Prim
algorithm shown in Algorithm 7. Thus, f1CAA 6 2f1MST as f1CAA = f1MST , where the
upper superscript 1 denotes the total projected travel distance after assigning the
first target.

Now suppose the first n − 1 targets assigned by CAA and inserted in the MST
are the same and fn−1

CAA 6 2fn−1
MST . As triangular inequality exists for the Euclidean

distances between the targets and from (4.9), (4.10) and (4.16), the marginal
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travel distance incurred by assigning the last target q through CAA is

δfCAA = min
(j,q)∈R×T u

cjq(t)

= min
j∈R,l6|oj(t)|+1

{d(oj(t)⊕l q)− d(oj(t))}

= min
j∈R
{ min
l6|oj |−1

{d(olj , q) + d(q, ol+1
j )− d(olj , ol+1

j )}, (4.17)

d(pj(0), q) + d(q, o1j )− d(pj(0), o1j ), d(o
|oj(t)|
j , q)}

6 min
j∈R,l6|oj |−1

{2d(olj , q), 2d(q, ol+1
j )}, (4.18)

where olj is the lth target on the ordered target list oj(t) and t = 0. On the other
hand, according to line 3 of Algorithm 7, the marginal edge weight incurred by
inserting the last target q into the MST is

δfMST = min
(j,q)∈MST×{q}

d(j, q)

= min
j∈R,l6|oj |−1

{d(olj , q), d(q, ol+1
j )}. (4.19)

Combining (4.17) and (4.19) and in view of the fact fn−1
CAA 6 2fn−1

MST , we get

fnCAA = fn−1
CAA + δfCAA

6 2fn−1
MST + 2δfMST . (4.20)

Since fnMST = fn−1
MST + δfMST , it holds that fnCAA 6 2fnMST . Thus, combining

fnCAA 6 2fnMST and fnMST 6 fo in view of Lemma 4.8, we arrive at the conclusion.

In addition, we investigate the worst performance of DAA with an arbitrary ini-
tial communication network of the vehicles. After initializing the vehicles’ routes
at time t = 0, for each vehicle j ∈ R, let d(oj(0)) be the projected total distance
for vehicle j to visit all the targets on its route oj(0) if at least one target is on the
route, and otherwise d(oj(0)) = 0.

Proposition 4.10. With an arbitrary initial communication network of the vehicles,
DAA guarantees that all the target locations will be visited with the vehicles’ total
travel distance fDAA ≤

∑
j∈R d(oj(0)).

Proof. According to Lemma 4.7, the total projected total travel distance of the
vehicles guided by DAA in each CC subnetwork is non-increasing after the infor-
mation updating for the CC vehicles. Thus, the worst total travel distance of the
vehicles is

∑
j∈R d(oj(0)). One of the scenarios leading to the worst total travel

distance is the case when each of the vehicles visits all the target locations initially
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assigned to it without being able to communicate with any other vehicles during
its movement. Thus, the proof is complete.

Remark 4.11. The proposed DAA can also be used to optimize other objectives such as
the time when the last target is visited or the total waiting time until all the targets
are visited by the vehicles. However, the performance of the algorithm needs to be
further investigated for optimizing other objectives.

Now we have presented all the theoretical results, and are ready to show the
simulation findings.

4.4 Simulations

In this section, Monte Carlo simulations are carried out to test the decentralized
algorithm DAA. We first employ DAA on the task assignment problem for homoge-
neous vehicles, followed by various simulations on the scenarios with increasing
targets’ heterogeneity |A|, where |A| is the cardinality of A. All the experiments
have been performed on an Intel Core i5− 4590 CPU 3.30 GHz with 8 GB RAM,
with algorithms compiled by Matlab under Windows 7.

The solution quality of each algorithm is defined by

q =
f

fMST
, (4.21)

where f is the total travel distance for the vehicles to visit all the targets resulting
from minimizing (4.1) and fMST is a lower bound of the optimal total travel
distance as shown in Lemma 4.8. Then, the closer the value of q becomes to 1 the
better performance the solution obtains.

4.4.1 Task assignment for homogeneous vehicles

The algorithm DAA is first tested on the task assignment for homogeneous vehi-
cles under different communication ranges. Two sets of simulations have been
performed in a 1000 × 1000 m2 area where the numbers of homogeneous target
points and vehicles are 15 and 4, 30 and 6 respectively. For each instance, Monte
Carlo simulations have been carried out on 500 scenarios where the positions of
the targets and the vehicles are randomly generated. The mean solution results of
DAA are shown in Fig. 4.5 and Fig. 4.6 with the comparison with the rendezvous-
based algorithm (RBA), the decentralized single-traveling-salesman tour cooper-
ative method (STSTC) and the Greedy Algorithm in [5]. For each instance, the
mean q of DAA shown in the two figures is the smallest compared with that of the
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Figure 4.5: The mean solution quality of different algorithms for 4 homoge-
neous vehicles to visit 15 targets under different communication ranges where
rc = 712.8m.
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Figure 4.6: The mean solution quality of different algorithms for 6 homoge-
neous vehicles to visit 30 targets under different communication ranges where
rc = 600m.

STSTC and the Greedy Algorithm, which shows the better performance of DAA.
Furthermore, DAA outperforms the centralized RBA when the vehicles’ commu-
nication range is greater than rc/2 where rc = 712.8m leads to the connection
of the communication network with probability of 0.99 [65]. This is because the
vehicles guided by the RBA need to first rendezvous at the center-of-gravity of the
target points to make them CC [5], and thus leading to a waste of travel distance.
Finally, the total travel distance of the assignment obtained by DAA is below twice
of the optimal one when the vehicles’ communication range is greater than rc/3.
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Table 4.1: The mean solution quality q of HDA and DAA for m = 6 vehicles
with different heterogeneities |A| to visit n = 30 target locations under increasing
communication range r, where rc = 600m.

q Algorithm |A| = 2 |A| = 3 |A| = 4 |A| = 5 |A| = 6

r = 1m HDA 3.4717 2.3407 1.7132 1.3638 1.1351
DAA 3.4717 2.3407 1.7132 1.3638 1.1351

r = 1 ∗ rc/6
HDA 1.9504 1.6221 1.4022 1.2495 1.1351
DAA 1.9274 1.6009 1.3919 1.2474 1.1351

r = 2 ∗ rc/6
HDA 1.5582 1.4016 1.2855 1.2048 1.1351
DAA 1.5170 1.3682 1.2578 1.1942 1.1351

r = 3 ∗ rc/6
HDA 1.3126 1.2393 1.1990 1.1658 1.1351
DAA 1.2624 1.2111 1.1744 1.1555 1.1351

r = 4 ∗ rc/6
HDA 1.1878 1.1727 1.1565 1.1453 1.1351
DAA 1.1631 1.1601 1.1495 1.1435 1.1351

r = 5 ∗ rc/6
HDA 1.1507 1.1529 1.1442 1.1406 1.1351
DAA 1.1467 1.1493 1.1427 1.1404 1.1351

r = 6 ∗ rc/6
HDA 1.1453 1.1492 1.1417 1.1398 1.1351
DAA 1.1437 1.1483 1.1415 1.1399 1.1351

That also verifies the performance bound guarantee of DAA shown in Theorem 2
when the communication network of the vehicles is connected, i.e. r = rc.

4.4.2 Task assignment for heterogeneous vehicles

In this section, we first run DAA on the task assignment problem where m = 6

dispersed vehicles under different communication ranges r need to visit n = 30

target locations with increasing heterogeneity |A|. Due to the satisfying perfor-
mance on guiding vehicles for search and rescue task assignment compared with
that of CBBA, the heuristic distributed algorithm (HDA) in [83] is compared with
DAA for heterogeneous task assignment of multiple vehicles. The HDA uses the
marginal significance incurred by inserting each target at all possible positions of
the vehicles’ routes to assign the targets, and defines the significance of a target by
removing it from its corresponding position on a vehicle route containing the tar-
get. DAA makes task assignment based on the minimal incurred cost of assigning
each unassigned target, which differs from HDA as follows. DAA constructs the
routes of the CC vehicles from scratch by assigning each target to the vehicle with
the smallest incurred cost, while HDA makes target reassignment directly based
on the current routes of the CC vehicles where a target is removed from its current
position on a vehicle’s route, and is assigned to another vehicle if the marginal sig-
nificance of inserting the target into the route of the latter vehicle is smaller than
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Table 4.2: The mean amount of data (105 bytes) relayed for m = 6 vehicles with
different heterogeneities |A| guided by HDA, DAA and CAA to visit n = 30 target
locations under increasing communication range r, where rc = 600m.

Data relayed Algorithm |A| = 2 |A| = 3 |A| = 4 |A| = 5 |A| = 6

r = 1 ∗ rc/6
HDA 2.6525 1.7352 1.0261 0.4747 4.3152
DAA 4.7297 4.8322 4.5819 4.4393 4.3152
CAA 12.8744 13.2027 12.5462 12.1706 11.9303

r = 2 ∗ rc/6
HDA 2.8770 1.9481 1.1728 0.5635 6.4860
DAA 5.9341 6.5702 6.9101 7.1652 6.4860
CAA 16.0655 17.8692 18.8337 19.5528 17.9318

r = 3 ∗ rc/6
HDA 3.2648 2.1329 1.3397 0.7086 4.7002
DAA 6.1134 6.5526 6.5935 6.7829 4.7002
CAA 16.3616 17.6188 17.7728 18.3142 12.9946

r = 4 ∗ rc/6
HDA 3.4039 2.2532 1.5286 1.0182 2.3446
DAA 4.6646 4.6149 4.5518 4.4915 2.3446
CAA 12.2805 12.1993 12.0843 11.9489 6.4821

r = 5 ∗ rc/6
HDA 2.8228 2.1607 1.6917 1.3769 0.9829
DAA 3.0691 3.0310 2.9442 2.9699 0.9829
CAA 7.9659 7.8915 7.6851 7.7764 2.7174

r = 6 ∗ rc/6
HDA 2.2226 1.9920 1.8188 1.7053 0.2772
DAA 2.2593 2.2576 2.2699 2.2590 0.2772
CAA 5.8137 5.8171 5.8611 5.8391 0.7665

the target’s significance when located on the route of the former vehicle. Because
of the assumption that vehicles move with the unit speed, the minimization of the
total travel distance is equivalent to the the minimization of the total travel time.
Thus, it is reasonable to compare DAA with HDA.

For vehicles under each communication range in {1, rc/6, 2rc/6, ..., 6rc/6} and
each |A| in {2, 3, ...,m}, Monte Carlo simulations of DAA and HDA are carried out
on 500 scenarios where the locations of the targets and vehicles, the attribute of
each target and the ability of each vehicle are randomly generated. The mean so-
lution quality q of DAA and HDA and the mean amount of data (bytes) exchanged
through the communication among all the vehicles guided by HDA, DAA and CAA
are shown in Table 4.1 and Table 4.2, respectively. Firstly, the most of q shown in
Table 4.1 are within twice of the optimal, which shows the satisfying performance
of DAA and HDA. Secondly, the table shows that for each |A| a longer communi-
cation range of the vehicles generally leads to a better performance of both DAA
and HDA except for the case when |A| = m. The reason is that the vehicles are too
heterogeneous to have any cooperation regardless of their communication ranges
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as every two vehicles are different when |A| = m. Furthermore, for the vehicles
under each communication range r a larger |A| usually results in a smaller q for
DAA and HDA. This is because a large |A| means that a small number of vehicles
can cooperate as vehicles with different capabilities are independent, where less
cooperation leads to less dependency on the communication. As a consequence,
DAA and HDA are less sensitive to the vehicles’ communication range when in-
creasing |A|. However, in Table 4.1 DAA has the smaller average q compared with
that of HDA for the majority of the instances while they perform equally well when
r = 1m and |A| = m (the cells colored in light gray in Table 4.1). When r = 1m
or |A| = m, the vehicles rarely cooperate as they either have short communica-
tion range or are too heterogeneous to have any cooperation. As DAA and HDA
assign the targets both relying on the minimal incurred cost/significance of each
target, they have the same initial target assignments when r = 1m or |A| = m.
If the vehicles have no cooperation during their later movement as when r = 1m
or |A| = m, the total travel distances of the vehicles guided by DAA and HDA are
the same. The only case where HDA has a slightly better performance than DAA
is when r = 6 ∗ rc/6 and |A| = 5 (the cell colored in saturate gray). The better
performance of DAA over HDA is due to the fact that the CC vehicles guided by
DAA exchange and store all the available bids on every target instead of only on
the targets that can be visited by the vehicles, where the latter might lead to local
optimal as noted in [83].

Firstly, Table 4.2 shows that the mean amount of data relayed among the vehi-
cles guided by the centralized CAA is the largest compared with those of decentral-
ized HDA and DAA where DAA has a higher communication overhead than HDA.
The reason is that the centralized CAA requires each CC vehicle to transmit almost
all information on its information tuple to a leader vehicle to assign the unvisited
targets to the CC vehicles, while each CC vehicle guided by the decentralized DAA
updates its route through relaying its updated information to the directly CC ve-
hicles and thus exchanging a smaller amount of information each time as shown
in Algorithm 3 to Algorithm 6. The vehicles guided by DAA communicate more
than those under HDA because each of the CC vehicles exchanges and storages the
necessary information of each other CC vehicles to make the heterogeneous vehi-
cles cooperative, which leads to the better performance of DAA as shown in Table
4.1. Secondly, the communication cost of the vehicles under each heterogeneity
|A| for the algorithms generally first increases and then decreases as the vehicles’
communication range r increases. The initial increase of the communication cost
is due to the fact that a longer r enables each vehicle to communicate with the
others with a higher probability, thus leading to the delivery of more data. How-
ever, when r increases above a certain range, a larger number of vehicles might
be CC initially and the CC vehicles might not further communicate during their
following movement as they have already cooperatively divided the unvisited tar-
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gets through the initial communication. Furthermore, the communication cost of
the vehicles under each r for the decentralized HDA and DAA generally decreases
with the increase of the vehicles’ heterogeneity |A| except for when |A| = m. That
is because part of the massages will be relayed between the CC vehicles for task
reassignment only when some of the vehicles in Ri(t) are homogeneous as noted
in line 15 of Algorithm 4 where a larger |A| implies a higher heterogeneity of the
vehicles. However, when |A| = m, still a certain amount of massages are relayed
between the vehicles in each CC vehicle subgroup to check the personal informa-
tion of each vehicle such as the vehicle’s attribute and ID as shown in lines 1 to
12 in Algorithm 4. As the vehicles are completely heterogeneous when |A| = m,
each vehicle will move along its initial route to visit all the target locations on its
route, which leads to a long travel time of the vehicle. During the movement of
the vehicles under the long travel time, the vehicles in each newly CC vehicle sub-
group communicate to check their personal information, which results in a larger
communication cost compared with other |A|.

Table 4.3: The mean solution quality of HDA and DAA for m = 10 vehicles with
different heterogeneities |A| to visit n = 100 target locations under increasing
communication range r, where rc = 482m.

q Algorithm |A| = 2 |A| = 4 |A| = 6 |A| = 8 |A| = 10

r = 1m
HDA 5.8170 2.9868 1.9501 1.4592 1.1807
DAA 5.8170 2.9868 1.9501 1.4592 1.1807

r = 1 ∗ rc/6
HDA 2.3779 1.8156 1.5330 1.3436 1.1807
DAA 2.2680 1.7458 1.4723 1.3012 1.1807

r = 2 ∗ rc/6
HDA 1.7714 1.5280 1.4125 1.3049 1.1807
DAA 1.6698 1.4533 1.3264 1.2453 1.1807

r = 3 ∗ rc/6
HDA 1.4318 1.3296 1.3124 1.2669 1.1807
DAA 1.3292 1.2577 1.2254 1.1979 1.1807

r = 4 ∗ rc/6
HDA 1.2753 1.2289 1.2564 1.2349 1.1807
DAA 1.1915 1.1953 1.1949 1.1876 1.1807

r = 5 ∗ rc/6
HDA 1.2071 1.1953 1.2203 1.2109 1.1807
DAA 1.1808 1.1874 1.1912 1.1857 1.1807

r = 6 ∗ rc/6
HDA 1.1842 1.1869 1.1987 1.1937 1.1807
DAA 1.1791 1.1866 1.1903 1.1852 1.1807

We also apply DAA and HDA for m = 10 vehicles under different communica-
tion ranges to visit n = 100 targets with different attributes |A|. For each instance,
Monte Carlo simulations of DAA and HDA are carried out on 500 scenarios where
the locations of the targets and vehicles, the attribute of each target and the abil-
ity of each vehicle are randomly generated. The mean solution quality q of DAA
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Table 4.4: The mean amount of data (107 bytes) relayed for m = 10 vehicles with
different heterogeneities |A| guided by HDA, DAA and CAA to visit n = 100 target
locations under increasing communication range r, where rc = 482m.

Data relayed Algorithm |A| = 2 |A| = 4 |A| = 6 |A| = 8 |A| = 10

r = 1 ∗ rc/6
HDA 2.2190 1.2865 0.6521 0.2486 4.5028
DAA 4.0723 4.5413 4.6833 4.6830 4.5028
CAA 11.8651 13.2538 13.6751 13.6770 13.1620

r = 2 ∗ rc/6
HDA 2.5132 1.4259 0.7438 0.2891 7.8799
DAA 5.0384 6.4732 7.4261 7.8358 7.8799
CAA 14.6571 18.8778 21.6728 22.8754 23.0335

r = 3 ∗ rc/6
HDA 2.9765 1.6363 0.8263 0.3299 6.2388
DAA 5.9080 6.9251 7.3767 7.2563 6.2388
CAA 17.1243 20.1394 21.4819 21.1377 18.2364

r = 4 ∗ rc/6
HDA 2.9632 1.6985 0.9149 0.5127 2.6697
DAA 4.1055 4.1039 3.9735 3.7931 2.6697
CAA 11.8341 11.8657 11.5125 11.0012 7.8037

r = 5 ∗ rc/6
HDA 2.3378 1.4852 0.9968 0.7475 1.0360
DAA 2.2477 2.1291 2.1393 2.1852 1.0360
CAA 6.4515 6.1238 6.1663 6.3086 3.0284

r = 6 ∗ rc/6
HDA 1.6291 1.2293 1.0247 0.9181 0.3432
DAA 1.3883 1.3859 1.3708 1.3735 0.3432
CAA 3.9745 3.9715 3.9325 3.9435 1.0032

and HDA and the mean amount of data (bytes) exchanged through the communi-
cation among all the vehicles guided by HDA, DAA and CAA are shown in Table
4.3 and Table 4.4, respectively, where the cells colored in light gray in Table 4.3
are the cases when DAA and HDA perform equally well while DAA outperform
HDA in the other instances. Table 4.3 shows the same trend on the performance
of DAA and HDA as displayed in Table 4.1, which shows the robustness of DAA.
However, the q in Table 4.3 are relatively larger than that in Table 4.1 especially
when r = 1m. The reason is that a short communication range leads to a less co-
operation between the CC vehicles where the vehicles travel with more inefficient
routes if the numbers of the target locations and vehicles are big. Table 4.4 shows
the same changing trend on the communication cost of HDA, DAA and CAA as that
displayed in Table 4.2.

To further investigate the scalability of DAA, we test it on a setup where 10

vehicles need to visit a large number of targets ranging from 100 to 600. Experi-
ments on 500 scenarios have been carried on each instance where the locations of
the targets and vehicles, the attribute of each target and the ability of each vehicle
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Figure 4.7: The mean solution quality q of DAA for 10 vehicles with different het-
erogeneities |A| to visit different numbers of target locations, where the vehicles
are initially CC.
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Figure 4.8: The corresponding mean computation time for DAA to calculate the so-
lutions for 10 vehicles visiting different numbers of target locations under different
heterogeneities |A|, where the vehicles are initially CC.

are randomly generated, and all the vehicles are assumed initially CC. The mean
solution quality q and the corresponding mean computation time are shown in
Fig. 4.7 and Fig. 4.8 respectively. For each |A|, the q shown in Fig. 4.7 increases
as increasing the number of the target locations. For a given number of target
locations, Fig. 4.7 first shows that the mean q generally increases when increas-
ing the targets’ heterogeneity |A|. The reason is that a small number of vehicles
work together when they have a large |A| as the vehicles with different capabilities
are independent. However, the means q of each instance are within the interval
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[1.169 1.279], which verifies the satisfying performance of DAA shown in Theorem
4.9. For each |A|, the mean computation time shown in Fig. 4.8 increases as in-
creasing the number of the target locations. The reason is that a large number of
the same kind of targets are under consideration when increasing the number of
targets. Furthermore, Fig. 4.8 shows that for each number of target locations a
larger |A| incurs a shorter running time. It is because a small |A| means that large
numbers of vehicles and tasks are included in one search for the assignment. The
figure also indicates that the computation time is affected by |A|, where a smaller
|A| leads to a larger computation time. The reason is that the marginal inserting
cost of an unassigned target q is calculated for a vehicle j only when j has the
ability to visit q, i.e. aq = aj , as shown in line 4 of Algorithm 5, where a smaller
|A| means more vehicles generally have the same ability to visit each q and each
vehicle has the ability to visit more targets. Finally, the computation time shown in
Fig. 4.8 a little bit downgrades the time complexity of O(n2(n+m2)). The reason
is that the computational running time of O(n3) is obtained assuming that line 4

of Algorithm 5 applies for all q ∈ Ti(t) without considering the attribute of each
target. In the simulation experiments, the condition shown in line 4 of Algorithm
5 is not always satisfied as the vehicles are heterogeneous and one vehicle can
generally visit a subset of the targets. And for this reason, the computation time
in the simulation example is much lower than the worst-case maximum.

4.5 Conclusion

This chapter has studied the task assignment problem where several initially dis-
persed heterogeneous vehicles under limited communication range need to visit a
set of target locations. The decentralized auction algorithm DAA proposed in the
chapter has guaranteed that all the target locations are visited in a finite time irre-
spective of the vehicles’ communication range. Furthermore, we have illustrated
that a longer communication range of the vehicles does not necessarily lead to
a better performance of DAA, which can also be the case for other decentralized
algorithms due to the lack of overall environmental information. Finally, extensive
simulation results have verified the satisfying performance of DAA, such as the to-
tal travel distance being at most twice of the optimal when the vehicles are initially
CC, and scalability with growing numbers of vehicles, targets and heterogeneity.



Chapter 5

Precedence-constrained multi-vehicle task
assignment

THIS chapter studies the precedence-constrained task assignment problem for
a team of heterogeneous vehicles to deliver packages to a set of dispersed

customers subject to precedence constraints that specify the sequence priorities
on visiting the customers. A truck and a micro drone with complementary capa-
bilities are employed where the truck is restricted to travel in a street network and
the micro drone, restricted by its loading capacity and operation range, can fly
from the truck to perform the last mile package deliveries. The objective is to min-
imize the time to serve all the customers respecting every precedence constraint.
The problem is shown to be NP-hard, and a lower bound on the optimal time to
serve all the customers is constructed by using tools from graph theory. Then,
integrating with a topological sorting technique, several heuristic task assignment
algorithms are proposed to solve the task assignment problem. Numerical simula-
tions show the superior performances of the proposed algorithms compared with
popular genetic algorithms.

5.1 Introduction

In recent years, parcel delivery to customers is facing new challenges as e-commerce
has grown vastly [58] where the benefit of using micro drones as additional sup-
port for package delivery has been identified [27]. Consequently, some leading
retailers or distributors such as Amazon and DHL have planned to employ mi-
cro drones for small package deliveries. However, micro drones are subject to
short operation range and small payload capacity which greatly restrict their ef-
ficiency to function in an autonomous delivery network [53]. To overcome the
limitations, some investigation has been done to consider a heterogeneous team
consisting of one carrier truck and one micro drone with complementary capabil-
ities [53, 60, 69, 77]. In [53], the package delivery problem for the truck and
the drone has been formulated as an optimal path planning problem on a graph,
and then the problem is reduced to the generalized traveling salesman problem.
Marray and Chu [60] have formulated the heterogeneous parcel delivery prob-
lem as a mixed integer linear programming problem and further investigated two
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cases where one considers the release and recovery of the drone by using the truck
while the other just uses the depot to release and recover the drone. Considering
the drone’s operation range and capacity constraint, Savuran and Karakaya [69]
have designed a genetic algorithm (GA) to plan the route for the drone deployed
on a mobile platform to visit a set of fixed targets. In [77], several worst-case
analysis theorems have been investigated revealing the maximum amount of time
that could be saved as a result of using trucks and drones in combination rather
than employing trucks alone for delivering packages. In [60, 77], the truck itself
is also allowed to deliver parcels to customers, which is different from [53].

For logistic scheduling, another challenge is that some customers can have pri-
ority over the others to be served due to their urgency or importance. In these
cases, the precedence constraints on the visiting sequence of customers have to
be respected, and the positioning of one customer in the sequence is directly af-
fected by the customers which are required to be served earlier. Precedence con-
straints have been studied earlier in the so called sequence ordering problem [25],
which is also referred to as the sequence problem with precedence constraints
[74]. Constructing TSP tours while respecting some precedence constraints yields
the precedence-constrained TSP, which was called PCTSP [42]. Considering the
loading constraint of unmanned aerial vehicles and the precedence constraints
on multiple visits at one target, a GA was proposed for the multi-vehicle task as-
signment [71]. For the TSP where a given subset of targets is required to be
visited in some prescribed linear order, an algorithm guaranteeing quantifiable
performances was designed [9]. Each subset of targets with the linear visiting
constraints can be treated as one single vertex, thus leading to the transforma-
tion of the TSP subject to the precedence constraints in [9] into the standard TSP.
A topological sorting technique was integrated with a GA to solve the TSP with
precedence constraints in [56]. The topological sorting technique guarantees that
the planned path is feasible while the GA uses a crossover operator, mimicking the
changes of the moon, to adjust the sequence for visiting the target locations. Later
on, an improved GA based on topological sorting techniques was proposed in [82]
to solve precedence-constrained sequencing problems. Only one chromosome is
needed by the crossover operator to undergo the crossover evolution where each
chromosome constructs a feasible solution to the problem.

Motivated by the existing literature just mentioned, we investigate the precede-
nce-constrained heterogeneous delivery problem (PCHDP) for which one drone
coordinates with one truck to efficiently deliver packages to a set of dispersed cus-
tomers subject to precedence constraints that specify which customers need to be
visited before which other customers. We first investigate the feasible deployment
patterns for the drone to travel from one customer to another in coordination with
the truck, and then obtain the travel cost matrix specifying the feasible minimal
time for the drone to fly between each pair of customers. Finally, integrating the
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topological sorting technique [56, 82], we design several heuristic task assign-
ment algorithms to iteratively put the customers in an ordered manner respecting
the precedence constraints. Our main contributions are as follows. Firstly, we
prove that the precedence-constrained task assignment problem is NP-hard, and
construct a lower bound on the optimal solution by using tools from graph theory.
This lower bound can be used to approximately measure the quality of a solution
compared with the optimal. Secondly, inspired by [53], we have extended the fea-
sible deployment patterns for the drone to travel between two customers with the
coordination of the truck. Lastly, two heuristic algorithms designed in the chap-
ter can obtain satisfying solutions within short computation time even when the
number of customer locations is large.

The rest of this chapter is organized as follows. In Section 5.2, the formula-
tion of the precedence-constrained package delivery for heterogeneous vehicles is
given. Section 5.3 presents the problem analysis, and in Section 5.4 several task
assignment algorithms are presented. We show the simulation results in Section
5.5 and conclude the chapter in Section 5.6.

5.2 Problem formulation

5.2.1 Problem setup

0w 3w 4w

Street vertex
Customer
Truck path

1c

2c

3c

1w 2w

Deport

Drone path

Figure 5.1: One illustration on the heterogeneous package delivery problem with
one drone coordinating with one truck to deliver parcels to three dispersed cus-
tomers.

Now we are ready to define the research problem PCHDP. A drone in coordina-
tion with a truck is deployed to deliver packages to a set of n dispersed customers
subject to precedence constraints that specify the sequence priorities on visiting
the target locations. Each customer receives one package to be delivered by the
drone, and the truck is restricted to travel between a set of stopping points as ver-
tices on a graph describing the topology of a street network. Each customer can
be visited by the drone released from the truck from at least one stopping point
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Figure 5.2: The digraph Gp = (V p, Ep) shows precedence constraints on serving
the customer (target) vertices (a) Digraph in [56] and (b) Simplified digraph.

vertex to ensure that all the customers can be served. The objective is to minimize
the time when the last customer is served while satisfying every precedence con-
straint, and the constraints that the drone can carry only one package each time
and has limited operation range. One illustration on the package delivery problem
without any precedence constraint is shown in Fig. 5.1.

5.2.2 Formulation as an optimization problem

Let C = {c1, . . . , cn} be a set of vertices representing n customer locations, and
the indices of the stopping point vertices are denoted by W = {w1, · · · , wm}. Let
w0 denote the depot, a special stopping point vertex, where the heterogeneous
vehicle team is initially located. For each i, k ∈ I where I =W ∪ {w0} and j ∈ C,
let the binary decision variable σijk = 1 if and only if it is planned that the drone
serves customer j by directly flying from stopping point vertex i and then flying to
stopping point vertex k, and the binary variable yik = 1 if and only if it is planned
that the truck directly travels from stopping point vertex i to stopping point vertex
k. Let d(i, j) denote the Euclidean distance between vertices i and j, and the
binary value prj = 1 if one requires customer r to be visited before customer j, and
prj = 0 if there is no such a requirement. As shown in Fig. 5.2 (a), the digraph
Gp = (V p, Ep) consists of a subset of customer vertices in C and a set of directed
edges Ep showing the precedence constraints among the vertices. It can be easily
checked that the problem has feasible solutions only if no direct cycles exist in Gp,
i.e. Gp is acyclic. It is assumed that the drone flies with a constant speed vd under
the maximum fly distance L, and the truck travels with a constant speed vt under
no travel range constraint.

The variable tj is employed to represent the time when customer j, j ∈ C, is
served, and P (t) is the vertex where the truck is located at time t. Then, the
problem is to minimize the time for visiting all the customer locations

f = max
j∈C

tj , (5.1)
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subject to ∑
i,k∈I

σijk = 1, ∀j ∈ C; (5.2)

σijk = yik, ∀i, k ∈ I, k ̸= i,∀j ∈ C; (5.3)

yii = 0, ∀i ∈ I; (5.4)

P (tj −
d(i, j)

vd
)σijk = σijki, ∀i, k ∈ I, ∀j ∈ C; (5.5)

(d(i, j) + d(j, k))σijk 6 L, ∀i, k ∈ I,∀j ∈ C; (5.6)

(tr − tj)prj 6 0, ∀r, j ∈ C. (5.7)

Constraint (5.2) ensures that each customer is served; (5.3) guarantees the drone
to be recharged by the truck after serving each customer; (5.5) makes sure the
drone’s path is feasible through coordinating with the truck; (5.6) ensures the
drone’s fly distance is within its capability; (5.7) guarantees the precedence con-
straints on visiting the customers are satisfied.

After formulating the task assignment problem as a constrained minimization
problem, we present in the following section the analysis of the optimization prob-
lem.

5.3 Problem analysis

5.3.1 Proof of NP-hardness

We can simplify the digraph Gp = (V p, Ep), specifying the precedence constraints
on visiting the customer locations, whenever the following two conditions hold at
the same time: (i) one customer vertex ci has one edge directly pointing at another
customer vertex cj and (ii) ci has multiple directed paths to cj . An example is
shown in Fig. 5.2 (a), where customer c1 has three independent directed paths to
c4 as c1 → c3 → c4, c1 → c2 → c4 and c1 → c4. Since c2 is required to be visited
before c4 and c1 is required to be visited before c2, the precedence constraint from
c1 to c4 becomes redundant. Then, after deleting some redundant precedence
constraints, the digraph shown in Fig. 5.2 (a) can be simplified to Fig. 5.2 (b).

Now consider the undirected graph G = (V,E,D) consisting of a vertex set
V = C ∪ I, an edge set E = EC ∪ EI , and a cost matrix D that saves the weight
of each edge in E. EI is a fully connected edge set containing the edge (wi, wk)

for every pair of stopping point vertices wi, wk ∈ I. EC contains pairs of flight
edges (wi, cj) and (cj , wk) for all cj ∈ C and wi, wk ∈ I where the drone can
fly from vertex wi to serve customer cj and then return to wk. These wi are
called the viable deployment vertices for customer vertex cj from which the drone
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Figure 5.3: A transformation from the OTSP on graph G′ to the PCHDP on graph G
and Gp where (a) G′ = (V ′, E′, D′), (b) the G = (V,E,D) with D(wi+1, wj+1) =
D′(vi, vj), ∀vi, vj ∈ V ′, D(w0, w1) = 0, D(ci, wi) = 0 and D(wi, ci) = 0,∀wi ∈ V ,
and (c) Gp.

can be released to reach cj , and then the drone can return at lease one stopping
point vertex wk. The set Vj is employed to contain all such wi for customer cj .
Let D = (d(i, j))(m+n+1)×(m+n+1), i, j ∈ V , where d(i, j) specifies the distance
between the two vertices i and j associated with the edge (i, j).

In graph theory, the open TSP (OTSP) involves determining a Hamiltonian
path with the minimal length connecting in sequence each vertex exactly once
in a directed or undirected graph, and the TSP determines a Hamiltonian cycle
with the minimal length that is a cycle. Determining whether such cycles and
paths exist in graphs is the NP-complete Hamiltonian path problem [30, 199-200].
The requirement for the traveling salesman to return to the starting city does not
change the computational complexity of the problem. So the OTSP is NP-hard as
well [28]. Now we show that the optimization problem PCHDP is also NP-hard.

Theorem 5.1. The precedence-constrained task assignment problem PCHDP is NP-
hard.

Proof. To prove the NP-hardness of PCHDP, it suffices to show that: (i) every
instance of the OTSP can be reduced to an instance of PCHDP in polynomial time
and (ii) an optimal solution to PCHDP leads to an optimal OTSP solution. Let G′ =
(V ′, E′, D′) with |V ′| = n be an input to the OTSP, where vi, i ∈ {1, . . . , n − 1},
represent the n − 1 dispersed cities to be visited and v0 is the depot where the
traveling salesman is initially located. To prove (i), as shown in Fig. 5.3, we give
a polynomial-time transformation of G′ into G = (V,E,D) and Gp which are the
inputs to PCHDP.

The PCHDP is constructed such that each customer ci, i ∈ {1, . . . , n}, corre-
sponds to the vertex vi−1 in V ′, and ci has only one unique viable deployment
stopping point vertex wi. A starting vertex (depot) w0, where the truck and the
drone start the delivery task, is added to V . Now for each edge (vi, vj) in E′

with the weight d′(vi, vj), add a sequence of directed edges from customer ver-
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tex ci+1 to cj+1 as (ci+1, wi+1), (wi+1, wj+1) and (wj+1, cj+1) with the weight
d(wi+1, wj+1) = d′(vi, vj) while d(ci+1, wi+1) and d(wj+1, cj+1) are both zero. In
addition, add a bidirectional edge from w0 to w1 with d(w0, w1) = 0. Let the truck
in PCHDP have the same travel speed as that of the traveling salesman in OTSP.
Finally, to construct Gp, let customer vertex c1 have precedence constraints on the
other customers as the directed edges with arrows shown in Fig. 5.3 (c), and
there are no other precedence constraints among the customers. Thus, the trans-
formation from G′ to G and Gp is constructed, and we have obtained the inputs to
PCHDP.

To prove (ii), after the transformation of G′ to G and Gp, it is straightforward
to see that an optimal solution to PCHDP is also optimal to the OTSP based on
the edge weights of the graph G and the precedence constraints among the cus-
tomers, shown in Fig. 5.3 (b) and Fig. 5.3 (c). From Fig. 5.3 (b) and Fig. 5.3
(c), a PCHDP solution is of the form Pd = (w0, w1, c1, w1, · · · , wn, cn, wn) and
Pt = (w0, w1, · · · , wn) where Pd is the path of the drone and Pt is the path of
the truck. The PCHDP solution can be employed to generate an OTSP path of
the form P ′ = (v0, · · · , vn−1) by either extracting the order of the stopping point
vertices (w0, w1, · · · , wn) from Pd as the truck needs to visit every wi to serve each
ci or directly from Pt. If EP ′ contains the optimal sequence of edges in P ′, then
EPt = EP ′ . Since d(w0, w1) = 0, d(ci, wi) = 0 and d(wi, ci) = 0, it is straight-
forward to check that the shortest time for the drone to serve all the customers
satisfies

∑
e∈EPd

d(e) =
∑

e∈EP ′ d
′(e). Thus, the proof is complete.

Remark 5.2. If every customer location only has one precedence constraint requiring
it to be visited either before or after another customer location, the resulting problem
is a variant of the single-vehicle Dial-a-Ride Problem to design one vehicle route to
serve a set of customers at the required destinations [14].

5.3.2 A lower bound on the optimal solution

It can be costly to solve PCHDP optimally due to the NP-hardness of the problem.
As a consequence, it is natural to design heuristic algorithms to find sub-optimal
solutions. Then, one issue arises on how to evaluate the level of optimality of
a sub-optimal solution as the optimal is typically unknown. In this section, a
lower bound on the minimal time for the vehicles to serve all the customers while
satisfying every precedence constraint is constructed through obtaining a min-cost
arborescence (MCA) of a weighted digraph Gd = (V d, Ed, Dd) by the Edmonds’
algorithm [22]. The sum of all the edge weights of the MCA is minimal among all
the arborescences of Gd. The vertex set V d = C ∪ {w0} consists of the indices of
the n customer vertices and the depot. The edge set Ed, deduced from the digraph
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Figure 5.4: Three potential micro deployment patterns for the drone to serve two
customers cr and cj successively by the usage of stopping point vertices wi and
wk: (a) Pattern α, (b) Pattern β and (c) Pattern γ.

Gp, contains every directed edge orienting from vertex cr to cj for all cr, cj ∈ V d

if vertex cr can be visited before vertex cj . The matrix Dd contains the feasible
minimal time for the drone to fly from an arbitrary vertex cr to every cj , which is
obtained as follows.

Inspired by [53], for every customer vertex cr, let the set Vr contain the indices
of the viable deployment stopping point vertices from which the drone is viable
to be released to serve cr. Extending the results in [53], in Fig. 5.4 we show
three potential micro time deployment patterns for the drone located at customer
vertex cr with the remaining fly distance Lcr to serve customers cj when the truck
is located at stopping point vertex wi. The corresponding travel times of the drone
in the three micro deployment patterns are computed respectively as:

tα(cr, cj) = min
Lcr>d(cr,wi),

∀wi∈W,∀wk∈Vj

{d(cr, wi)

vd
+
d(wi, wk)

vt
+
d(wk, cj)

vd
}; (5.8)

tβ(cr, cj) = min
Lcr>d(cr,wi),

∀wi∈Vj

d(cr, wi) + d(wi, cj)

vd
; (5.9)

tγ(cr, cj) = min
Lcr>d(cr,wk),

∀wk∈Vj

{max{d(cr, wk)

vd
,
d(wi, wk)

vt
}+ d(wk, cj)

vd
}.(5.10)

Let Lcr = L−min∀wh∈Vr d(wh, cr), then the shortest time for the drone located
at the customer vertex cr to serve cj is

t⋆(cr, cj) = min{tα(cr, cj), tβ(cr, cj), tγ(cr, cj)}, (5.11)

which is the weight Dd(cr, cj) for the directed edge (cr, cj) ∈ Ed.
We give an example on formulating the directed Ed and the associated Dd

based on the directed Gp shown in Fig. 5.2 (b) and the corresponding weighted
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undirected G. A vertex set Sr, ∀cr ∈ C, is used to save the indices of the customer
vertices before which cr can be served. Sr is achieved in a backward manner.
Firstly, let Sr = C \ {cr}, ∀cr /∈ V p. Then, in Fig. 5.2 (b), S6 is first calculated as
S6 = ∪cr∈C\V pcr. Afterwards, Sr = ∪p′r

j =1(Sj∪{cj}) where p′rj = 1 if the customer
vertex cr has an edge directly pointing at customer vertex cj in the simplified Gp
as c1 and c2 in Fig. 5.2 (b). Thus, S7 = S6 ∪ {c6}. Then, Si can be obtained
iteratively for every ci ∈ V d. Finally, an edge Ed(cr, cj) exists connecting vertex cr
and every cj ∈ Sr, and the corresponding Dd(cr, cj) = t⋆(cr, cj) saves the shortest
feasible time for the drone to travel from cr to cj as shown in (5.11); for the other
cases Dd(cr, cj) = ∞. Let fa be the sum of all the edge weights of an MCA of Gd,
and fo be the optimal for the objective function shown in (5.1). Now the property
of the optimal solution is investigated.

Proposition 5.3. It holds that fa 6 fo.

Proof. According to Definition 1, an optimal path for the drone to serve all the cus-
tomers while respecting all the precedence constraints on visiting the customers
is an arborescence of the weighted digraph Gd. As fa is the sum of all the edge
weights of an MCA of Gd, it is straightforward to check that fa 6 fo.

Having done the theoretical analysis, we construct several heuristic algorithms
in the next section.

5.4 Task assignment algorithms

In this section, we first introduce one topological sorting technique, based on
which we propose three task assignment algorithms.

5.4.1 Topology sorting technique

Through topological sorting, all the feasible paths in a directed acyclic graph can
be obtained [79]. In [56, 82], the precedence-constrained TSP is solved by em-
ploying a topological sorting technique which iteratively sorts the customer ver-
tices in Gp′

without any predecessor in each iteration. Initially, let Gp′
= Gp.

The customer vertices without any predecessor are called viable customer vertices,
which can be inserted into the TSP path behind the customer vertices that are the
predecessors of them. Once inserting a viable customer vertex, to update Gp′

, the
customer vertex and the precedence constraints corresponding to the edges leav-
ing the customer in the current Gp′

are deleted. We give an example to show how
to construct a TSP path to visit all the customers from the representation scheme
by considering the precedence constraints shown in Fig. 5.2 (b). In the digraph,



86 5. Precedence-constrained multi-vehicle task assignment

the first customer vertex sorted to be inserted into the TSP path is c1, since c1 is
the only customer in Gp′

without any predecessor. Then, c1 is stored in the TSP
path, and at the same time c1 and the edges (c1, c3), (c1, c2) originating from c1
are deleted from Gp′

. In the next iteration, c2 and c3 are viable customer vertices
in the resulting Gp′

, which can then be inserted into the path after c1. The process
continues until all the customer vertices in Gp are inserted.

5.4.2 Task assignment algorithms

Inspired by [56, 82], the precedence-constrained package delivery task assignment
problem can be solved by first iteratively inserting a viable customer vertex into
the drone’s path based on the travel cost matrix Dd, and then planing the path for
the truck to ensure the drone’s path is feasible. That is to say the truck needs to
release the drone at one stopping point vertex to serve each customer, and then
recharges the drone at one stopping point vertex after the customer is served as
the drone’s capacity of carrying packages is only one.

Let Rl save the indices of the ordered customers already inserted into the
drone’s path after iteration l, and the customer set T A

Rl
contain the indices of those

customer vertices that have no predecessor in Gp′
and have not been inserted after

iteration l. Let T j
Rl

= {cr ∈ Rl : (cr, cj) ∈ Ep} for each cj ∈ T A
Rl

, and the set T j
a

save the ordered locations in Rl in which the customer cj is viable to be inserted
while satisfying every precedence constraint on visiting cj . Obviously, cj can only
be inserted into Rl behind all the customer vertices in T j

Rl
. If T j

Rl
= ∅, cj is viable

to be inserted at any position of Rl. For the task assignment algorithms, Rl is
initialized as {w0} where the drone and the truck are initially located.

Nearest inserting algorithm

The first heuristic algorithm is the nearest inserting algorithm (NIA) which puts
the customer vertices in a sequence based on the time for the drone to travel from
the customer vertices already inserted into the path to the one that can be inserted.

In iteration l + 1, NIA finds the customer cj⋆ ∈ T A
Rl

to be inserted and the
associated inserting position q⋆ + 1 as

(q⋆, cj⋆) = argmin
q∈T j

a ,cj∈T A
Rl

t⋆(Rl(q), cj), (5.12)

where T j
a = {p, ..., |Rl|}; p = maxcr∈T j

Rl

find(Rl, cr) is the farthest position to the

end of Rl after which customer cj is viable to be inserted; and Rl(q) is the qth
ordered customer on the path Rl. The operator find(Rl, cr) finds the location in
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Rl where the customer vertex cr is located. Then, the path Rl is updated to

Rl+1 =

{
{Rl, cj⋆}, if q⋆ = |Rl|,
{Rl(1 : q⋆), cj⋆ ,Rl(q

⋆ + 1 : |Rl|)}, otherwise,
(5.13)

where |Rl| is the size of Rl and Rl(1 : q⋆) saves the ordered customer vertices
located between the first and the q⋆th positions of Rl.

After the insertion of cj⋆ , we delete all the edges implying the precedence con-
straints initiating from cj⋆ and the vertex cj⋆ to update Gp′

. Then, the topological
sorting technique is used to update T A

Rl+1
which saves the indices of viable cus-

tomer vertices after iteration l + 1. The inserting procedures (5.12) and (5.13)
continue until all the customer vertices in C are inserted into the drone’s path.

Now we show an example on how NIA works as follows. Assume that the
current drone path for visiting the customers subject to the precedence constraints
shown in Fig. 5.2 (b) is Rl = {c1, c2, c5}. Then, the viable customer set is T A

Rl
=

{c3} as c3 is the only customer without any predecessor after deleting the customer
vertices already in Rl and the corresponding edges from Gp′

. Since c1 is the only
customer that is required to be visited before c3, c3 is viable to be inserted at
any place behind c1. Assume that Rl = {c1, c3, c2, c5} after the insertion of c3.
Then, the next viable customer c4 can only be inserted after c5 as c5 is required
to be visited before c4, where q = 4 according to (5.12). One feasible drone
path is Rl = {c1, c3, c2, c5, c4, c7, c6} after iteratively using the topological sorting
technique and the inserting procedure.

Minimum marginal-cost algorithm

The second task assignment algorithm is the minimum marginal-cost algorithm
(MMA), which determines the next customer to be inserted and the correspond-
ing inserting position based on the marginal travel time incurred by inserting the
customer. The marginal travel time incurred by inserting customer cj at the qth
position of Rl is approximated as

t(Rl ⊕q cj)− t(Rl) =


t⋆(Rl(q − 1), cj), if q = |Rl|+ 1,

t⋆(Rl(q − 1), cj) + t⋆(cj ,Rl(q))

−t⋆(Rl(q − 1),Rl(q)), otherwise,

(5.14)

where the operation Rl ⊕q cj inserts customer cj at the qth position of Rl. Target
cj is inserted to the end of Rl if q = |Rl| + 1, and t(Rl) denotes the total travel
time for the drone to deliver packages to all the customers in Rl based on the
travel cost matrix Dd. The incurred marginal time can be approximated by the
usage of the minimal travel time t⋆(cr, cj) shown in (5.11).
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MMA determines the customer cj⋆ ∈ T A
Rl

to be inserted into the path Rl and
the associated inserting position q⋆ in iteration l + 1 as

(q⋆, cj⋆) = argmin
p+16q6|Rl|+1,cj∈T A

Rl

{t(Rl ⊕q cj)− t(Rl)}, (5.15)

where p = maxcr∈T j
Rl

find(Rl, cr). Then, the path Rl is updated to

Rl+1 = Rl ⊕q⋆ cj⋆ . (5.16)

After the insertion of cj⋆ , all the edges implying the precedence constraints initiat-
ing from cj⋆ and the vertex cj⋆ are deleted to update Gp′

. The customer inserting
process continues until all the customers are inserted into the path.

Second-order minimum marginal-cost algorithm

The customer ordering strategy (5.15) shows that the customers already ordered
in the iteration l directly affect the customer to be inserted in the next iteration as
well as the inserting position. To accommodate the future customer to be inserted,
we propose the second-order minimum marginal-cost algorithm (SMMA) which
calculates the cost incurred by inserting a customer both considering the current
iteration and the future iteration. For SMMA, the customer cj⋆1 to be inserted and
its inserting position q⋆1 in iteration l + 1 satisfy

cj⋆1 = argmin
p2+16q26|Rl|+2,

cj1∈T A
Rl

,cj2∈T A
Rl

\{cj1}

{t((Rl ⊕q⋆1
cj1)⊕q2 cj2)− t(Rl)}, (5.17)

where q⋆1 = argminp1+16q16|Rl|+1{t(Rl ⊕q1 cj1)−t(Rl)}, p1 = max
cr∈T j1

Rl

find(Rl, cr),

and p2 = max
cr∈T j2

Rl⊕q⋆1
cj1

find(Rl ⊕q⋆1
cj1 , cr). Then, in iteration l + 1 the path Rl

is updated to

Rl+1 = Rl ⊕q⋆1
cj⋆1 . (5.18)

After the insertion of cj⋆1 , the vertex cj⋆1 and all the edges implying the precedence
constraints initiating from cj⋆1 are deleted to update Gp′

. The customer inserting
process continues until all the customers are inserted into the drone’s path.

It should be noted that the stopping point vertices used for formulating the
minimal travel time for the drone to fly between each two customers might not
be feasible to construct a truck path coordinating with the drone to serve all the
customers due to the truck’s limited travel speed. To show more detail, let the stop-
ping point vertex be wr where the drone is released to serve customer cr. Then,
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the feasible shortest time t(cr, cj) for the drone to successively visit customer cj
after visiting cr is obtained by equations from (5.8) to (5.11) where the drone’s
remaining fly distance Lcr is L − d(wr, cr), thus leading to t⋆(cr, cj) 6 t(cr, cj) in
(5.11) as L − d(wr, cr) 6 L − min∀wh∈Vr d(wh, cr). That is because a longer re-
maining fly distance Lcr would enable the drone to have more choices on choosing
stopping point vertices wi and wk to serve customers cr and cj as shown in Fig.
5.4. Thus, after achieving the drone’s path for visiting the customers based on
the algorithms NIA, MMA and SMMA, Lcr = L − d(wr, cr) is used to calculate
the feasible travel time for the drone released from stopping point vertex wr to fly
directly from customer cr to customer cj while considering the truck movement.

5.4.3 Computational Complexity

In this section, we analyze the computational complexity of running the NIA, MMA
and SMMA. The three algorithms iteratively insert a customer vertex to the drone’s
path whose length is |Rl| = l after the lth iteration of the inserting operation. The
computational complexity of NIA is determined by (5.12) where finding p requires
|T j

Rl
||Rl| basic operations in the (l+1)th iteration of the assignment. Thus, to find

q⋆ and cj⋆ in (5.12), |T j
a ||T A

Rl
||T j

Rl
||Rl| basic operations are needed in the (l+1)th

iteration, where |T j
a | 6 |Rl|, |T A

Rl
| 6 n− |Rl|, and |T j

Rl
| 6 |Rl|. As a consequence,

at most l3(n − l) basic operations are required in the (l + 1)th iteration. Taking
the sum for l to change from 1 to n, we get the computational complexity of NIA∑l=n

l=1 l
3(n−l), resulting in O(n5). Similar to NIA, the computational complexity of

MMA is determined by (5.15) where at most 2|T j
a ||T A

Rl
||T j

Rl
||Rl| basic operations

are required in the (l+1)th iteration. Thus, the computational complexity of MMA
is also O(n5).

The computational complexity of SMMA is determined by (5.17) where find-
ing p1 requires |T j1

Rl
||Rl| basic operations, finding q⋆1 requires at most 2|Rl| basic

operations, and finding p2 requires |T j2
Rl⊕q⋆1

cj1
||Rl ⊕q⋆1

cj1 | basic operations in the

(l+1)th iteration of the assignment. Thus, at most 2|Rl||T A
Rl
|(|T A

Rl
|−1)(|T j1

Rl
||Rl|+

2|Rl|+ |T j2
Rl⊕q⋆1

cj1
||Rl ⊕q⋆1

cj1 |) basic operations are required in the (l+ 1)th itera-

tion, which is at most 2l(2l2 + 4l + 1)(n − l)2. Then, we know the computational
complexity of SMMA is

∑l=n
l=1 2l(2l

2 + 4l + 1)(n− l)2, which is O(n6).

Now we have presented all the theoretical results of this chapter. In the fol-
lowing section, we carry out simulation studies.
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5.5 Simulations

Numerical simulations are carried out to test the proposed algorithms in com-
parison with the GA for the precedence-constrained assignment problem [82], in
which the GA is an improver version of that in [56]. The genetic parameters for
the compared GA are set as follows according to [82]. The maximum generation
number is 2000; the population size is 20; the crossover rate is 0.5 and the muta-
tion rate is 0.05 [82]. All the experiments have been performed on an Intel Core
i5− 4590 CPU 3.30 GHz with 8 GB RAM, and the algorithms are compiled by Mat-
lab under Windows 7. In addition to evaluating the travel time f shown in (5.1),
the solution quality of each algorithm is also quantified by

q =
f

fa
, (5.19)

where fa is the sum of all the edge weights of an MCA of the weighted directed
customer-vehicle graph Gd. Since fa 6 fo, from Proposition 5.3 where fo is the
maximal travel time of an optimal solution, the value of the ratio q closer to 1

means a better performance of the solution.
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Figure 5.5: The digraph Gp contains the precedence constraints on serving 40 cus-
tomers.

The algorithms are first tested on the task assignment problem where 40 cus-
tomer vertices are subject to the constraints shown in Fig. 5.5 which is simplified
from Fig. 11 in [56]. Ten instances of the initial positions of the customers are
randomly generated in a square area with edge length L0 = 103m, and there are
121 stopping point vertices evenly distributed in the area. The drone and the truck
initially located at the original position are first assumed to travel with the unit
speed. For each instance, we test the algorithms’ performances when increasing
the drone’s maximum fly distance L. The average travel time to deliver pack-
ages to all the customers and the corresponding average q of the algorithms on
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Table 5.1: The average travel time (s), resulting from the algorithms (A), for the
vehicles to deliver packages to 40 customer locations under different operation
ranges L of the drone and vd/vt = 1.

PPPPPPPPA
L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 15134 14628 14490 14192 14258 14243
NIA 16580 15973 15897 15793 15786 15759

MMA 14818 14207 13950 13883 13864 13862
SMMA 14596 14016 13725 13633 13619 13611

Table 5.2: The corresponding average solution quality q of the algorithms (A)
for employing the vehicles to deliver packages to 40 customer locations under
different operation ranges L of the drone and vd/vt = 1.

PPPPPPPPA
L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 2.4552 2.4462 2.4227 2.3721 2.3821 2.3795
NIA 2.6909 2.6738 2.6617 2.6442 2.6432 2.6385

MMA 2.4049 2.3726 2.3304 2.3195 2.3164 2.3160
SMMA 2.3682 2.3393 2.2911 2.2764 2.2742 2.2728

the instances are shown in Table 5.1 and Table 5.2 respectively. For the drone to
deliver packages to all the customers while satisfying the precedence constraints,
Table 5.1 first shows that the average travel time resulting from each algorithm de-
creases with the increase of the drone’s operation range L. It is reasonable as the
drone generally has more viable deployment stopping point vertices for serving
each customer when increasing its operation range, which leads to more efficient
paths for the drone to travel between two customers with the cooperation of the
truck. The average q of the algorithms shown in Table 5.2 always has the same
changing trend as the average travel time when increasing the drone’s maximum
fly distance. This might be due to the smaller difference between the real travel
time t(cr, cj) and the t⋆(cr, cj) shown in (5.11) when increasing the drone’s opera-
tion range. For every instance shown in Table 5.2, GA has the smaller q compared
with NIA, but it has the largest q compared with MMA and SMMA, which verifies
the satisfying performance of MMA and SMMA. Table 5.2 also shows that SMMA
has the better performance than MMA. That is because SMMA employs the predic-
tive strategy shown in (5.17) to determine the serving sequence of each customer.

To further test the performance of the algorithms, simulation experiments on
the problem with 120 customers where every customer has only one precedence
constraint requiring it to be served either before or after another customer as in
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Table 5.3: The average travel time (s), resulting from the algorithms (A), for the
vehicles to deliver packages to 120 customer locations under different operation
ranges L of the drone and vd/vt = 1.

PPPPPPPPA
L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 48059 46052 46074 45089 44822 45048
NIA 22733 20644 20778 20730 20732 20724

MMA 18665 17373 17320 17308 17307 17304
SMMA 18188 17182 17104 17095 17099 17097

Table 5.4: The corresponding average solution quality q of the algorithms (A)
for employing the vehicles to deliver packages to 120 customer locations under
different operation ranges L of the drone and vd/vt = 1.

PPPPPPPPA
L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 4.1413 3.9769 3.9763 3.8930 3.8714 3.8883
NIA 1.9590 1.7815 1.7938 1.7897 1.7899 1.7893

MMA 1.6068 1.4989 1.4944 1.4934 1.4933 1.4931
SMMA 1.5675 1.4834 1.4767 1.4760 1.4764 1.4762

the Dial-a-Ride Problem [14]. For the simulation, 10 instances of the customers’
initial locations and destinations are randomly generated in the same square area
with the same number of stopping point vertices. The drone and the truck are also
assumed to travel with the unit speed. For each instance, we test the algorithms’
performances when increasing the drone’s operation range L. The average time to
serve all the customers and the corresponding average q of the algorithms on the
instances are shown in Table 5.3 and Table 5.4 respectively. For every algorithm,
Table 5.3 first shows that the average travel time for the drone to deliver packages
to all the customers generally decreases when increasing the drone’s operation
range, which is the same compared with Table 5.1. Table 5.3 also shows that
the three proposed algorithms have a better performance compared with the GA
where their average q values are within twice of the optimal as shown in Table
5.4. That again verifies the satisfying performance of MMA and SMMA.

Finally, for the same environment setup for the 120 customers, we investigate
the algorithms’ performances when increasing both the drone’s fly speed vd and
maximum fly distance L. The truck is assumed to travel with the unit speed as
vt = 1 while the drone’s speed is increase to vd/vt = 1.4. The average time to
deliver packages to all the customers and the corresponding average q of the algo-
rithms on the 10 instances are shown in Table 5.5 and Table 5.6 respectively. For
each algorithm, the average travel time shown in Table 5.5 also decreases with the
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Table 5.5: The average travel time (s), resulting from the algorithms (A), for the
vehicles to deliver packages to 120 customer locations under different operation
ranges L of the drone and vd/vt = 1.4.

PPPPPPPPA
L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 47335 41759 38672 36115 35315 34946
NIA 21017 17678 17199 16999 16946 16863

MMA 16497 14763 14464 14381 14359 14344
SMMA 16400 14495 14116 14065 14066 14053

Table 5.6: The corresponding average solution quality q of the algorithms (A)
for employing the vehicles to deliver packages to 120 customer locations under
different operation ranges L of the drone and vd/vt = 1.4.

PPPPPPPPA
L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 5.5826 4.9611 4.6161 4.3278 4.2482 4.2150
NIA 2.4792 2.0988 2.0518 2.0346 2.0360 2.0320

MMA 1.9444 1.7527 1.7256 1.7210 1.7251 1.7285
SMMA 1.9314 1.7207 1.6840 1.6832 1.6858 1.6934

increase of the drone’s operation range L. Table 5.5 also shows that NIA, MMA
and SMMA have better performance compared with GA, and Table 5.6 shows that
the average q values of MMA and SMMA are still within twice of the optimal,
which verifies the superior performance of MMA and SMMA. Table 5.3 and Table
5.5 show that the drone’s average travel time to serve all the customers decreases
more rapidly when increasing the drone’s speed in comparison with increasing its
maximum fly distance. That is because the time for the drone to travel between
two customers decreases when increasing its speed, which directly leads to the de-
crease of the total time to serve all the customers. However, the drone’s speed can-
not be increased too much to ensure safety when delivering the parcels in the city.
Meanwhile, increasing the drone’s operation range might not necessarily decrease
its total travel time as the drone needs to return to the truck to be recharged with
parcel after serving each customer. In Table 5.7, we also show the corresponding
average computation time for the algorithms to achieve the solutions shown in Ta-
ble 5.5. Table 5.7 shows that the average computation times of GA are far larger
than those of NIA, MMA and SMMA where the SMMA is most time-consuming
among the proposed algorithms as indicated in Section 5.4.3. Concluding from
the above analysis, MMA and SMMA are more efficient than NIA and GA in every
instance while SMMA performs better than MMA. However, SMMA needs more
computation time than MMA. Then, it is suggested to use MMA for planning the
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Table 5.7: The corresponding average computation time (s) for the algorithms to
plan the paths for the vehicles to deliver packages to 120 customer locations under
different operation ranges L of the drone and vd/vt = 1.4.

PPPPPPPPA
L/L0 0.15 0.30 0.45 0.60 0.75 0.90

GA 128.88 128.85 128.81 128.50 130.62 131.75
NIA 0.27 0.31 0.31 0.30 0.31 0.32

MMA 0.85 0.84 0.85 0.86 0.87 0.85
SMMA 37.63 37.55 37.36 37.63 37.42 37.60

 

Figure 5.6: The paths resulting from SMMA for the truck and the drone to deliver
packages to 20 customers where L = 250m and vd = 30 km/hr and vt = 40 km/hr.
The total travel time of the drone is 1849.6s.

routes for the vehicles online as it can achieve the satisfying solution under short
computation time while to use SMMA if more computation time is allowed as it
offers a better solution.

Fig. 5.6 and Fig. 5.7 present a realistic package delivery instance on a Google
street map of a residential neighbourhood in Groningen, The Netherlands. The
neighborhood considered is a residential area outside the busy city center, but not
too far away from the city’s high-speed ring road. So it is an ideal test area for
the possible coordination between the truck and drone. For each of the drone’s
landing on a delivery point or each of its loading of one package on the truck,
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Figure 5.7: The paths resulting from SMMA for the truck and the drone to deliver
packages to 20 customers where L = 300m and vd = 30 km/hr and vt = 40 km/hr.
The total travel time of the drone is 1775.9s.

we assume a landing time of 30s is needed. We assume the speeds of the drone
and the truck are vd = 30 km/hr and vt = 40 km/hr, respectively. Fig. 5.6 shows
the paths for the truck and the drone to visit 20 delivery points where the visiting
of the target locations respects the presence constraints shown in Fig. 5.5, and
L = 250m. The total time for the drone and the truck to visit all the delivery
points is 1849.6s, which is approximately a reduction of 10% in the time to serve
all the customers by using a single delivery truck. Fig. 5.7 shows the paths for
the truck and the drone to visit the 20 delivery points where the drone’s maximum
flight range is increased to L = 300m. The total time for the drone and the truck
to visit all the delivery points is 1775.9s. It is worth mentioning that the time to
deliver packages to the 20 customers decreases in the two instances even though
the sequences for serving the customers are the same, which is due to the increase
of the drone’s operation range.

5.6 Conclusion

In this chapter, we have investigated the precedence-constrained package delivery
problem where one drone coordinates with one truck to efficiently deliver parcels
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to a set of customers while satisfying the precedence constraints on visiting the
customers. The problem has been shown to be NP-hard and a lower bound on
the minimum time to serve all the customers has been found. Integrated with a
topological sorting technique, we have designed several heuristic task assignment
algorithms. Numerical experiments have shown that the proposed algorithms can
quickly obtain satisfying solutions to the precedence-constrained task assignment
problem compared with the existing genetic algorithm. The proposed algorithms
will be extended for the precedence-constrained package delivery with one truck
coordinating with multiple drones. Another research direction is to investigate
the precedence-constrained package delivery with one truck coordinating with
one drone where the drone can deliver multiple packages in one run.



Chapter 6

Conclusions

THIS chapter summarizes the main results of this thesis and recommends possi-
ble directions for future research.

6.1 Conclusions

This thesis has studied the task assignment problem for multiple vehicles in chal-
lenging environments subject to constraints resulting from the environments, the
vehicles, and the tasks to be completed, respectively. In particular, the currents in
a drift field, the vehicles’ limited communication range, and the precedence con-
straints on visiting the target locations have been considered in the multi-vehicle
task assignment problem. We now review the main results in the thesis.

In Chapter 2 we have investigated the task assignment for multiple vehicles in
a time-invariant drift field where a vehicle can reach any other locations in the
field. The objective is to employ several dispersed vehicles to visit a set of target
locations in the drift field while trying to minimize the vehicles’ total travel time.
Based on optimal control theory, we have first designed a path planning algorithm,
which can generate the time-optimal path for a vehicle to travel between two
prescribed locations in a drift field. The path planning algorithm provides the cost
matrix for the target assignment, and generates routes once the target locations
are assigned to a vehicle. Using tools from graph theory, a lower bound on the
optimal solution is found, which can be used to measure the proximity of a solution
from the optimal. We have proposed several clustering-based task assignment
algorithms in which two of them guarantee that all the target locations will be
visited within a computable maximal travel time, which is at most twice of the
optimal when the cost matrix is symmetric.

Chapter 3 has addressed the multi-vehicle task assignment in a time-invariant
drift field with obstacles, which is a follow-up of Chapter 2. The vehicles have
different capabilities, and each kind of vehicles needs to visit a certain type of tar-
get locations; each target location might have the demand to be visited more than
once by different kinds of vehicles. A path planning method has been designed to
enable the vehicles to move between two prescribed locations in a drift field with
minimal time while avoiding any obstacle. In addition, a distributed task assign-
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ment algorithm has been proposed which enables the vehicles to efficiently visit
all the target locations in the drift field.

In Chapter 4 we have studied the task assignment problem in which multiple
dispersed heterogeneous vehicles with limited communication range need to visit
a set of target locations while trying to minimize the vehicles’ total travel distance.
Each vehicle initially has the position information of all the targets and of those
vehicles that are within its limited communication range, and each target demands
a vehicle with some specified capability to visit it. We have designed a decentral-
ized auction algorithm which first employs an information consensus procedure
to merge the local information carried by each communication-connected vehi-
cle subnetwork. Then, the algorithm constructs conflict-free target assignments
for the communication-connected vehicles, and guarantees that the total travel
distance of the vehicles is at most twice of the optimal when the communication
network is initially connected.

Chapter 5 has presented the precedence-constrained task assignment problem
for a truck and a micro drone to deliver packages to a set of dispersed customers
subject to precedence constraints that specify which customers need to be visited
before which other customers. The truck is restricted to travel in a street network
and the micro drone, restricted by its loading capacity and operation range, can fly
from the truck to perform the last mile package deliveries. The objective is to min-
imize the time to serve all the customers respecting every precedence constraint.
The problem has been shown to be NP-hard, and a lower bound on the optimal
time to serve all the customers has been constructed by using tools from graph
theory. Integrating with a topological sorting technique, we have designed several
heuristic task assignment algorithms to solve the task assignment problem.

6.2 Recommendations for future research

This thesis has investigated the multi-vehicle task assignment problem in different
challenging environments. As follow-ups, several practical issues still need to be
studied for the multi-vehicle task assignment problem in the future work.

Capacity-constrained multi-vehicle task assignment problem. In Chapters 2 and
4, we have addressed the multi-vehicle task assignment problems in a drift field
and subject to limited communication range, respectively. However, we have not
considered the vehicles’ capacity constraint under which each vehicle can visit a
maximum number of target locations. Neither have we looked at the case where
each vehicle has a maximum travel time. The vehicles’ maximum travel time
constrains the vehicles’ operation range, and the vehicles’ load capacity restricts
how many targets can be maximumly assigned to each vehicle, which greatly affect
how the target locations are assigned to the vehicles. Since the practical capacity
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constraints of the vehicles might complicate the multi-vehicle task problem, the
performance of the task assignment algorithms proposed in this thesis might no
longer be guaranteed. Of course, it will bring more practical contribution if one
considers the vehicles’ capacity constraints in the multi-vehicle task assignment
problem.

Multi-drone and multi-truck supported package delivery task assignment problem.
In Chapter 5, we have investigated the task assignment problem for a truck and a
micro drone to deliver packages to a set of dispersed customers, where the truck is
restricted to travel in a street network and the micro drone with package loading
capacity of one and limited operation range can fly from the truck to perform the
last mile package deliveries. With the increase of the loading capacity of the drone
and the loading capacity of the truck, one drone can deliver packages to several
customers after each package recharging from the truck, and the truck can carry
multiple drones to perform the package delivery. As a result, it is both interesting
and urgent to investigate how to plan the routes for one or several trucks, each of
which carries several drones in order to increase their delivery efficiency, such as
minimizing the maximum delivery time when the last customer is served.

Precedence-constrained multi-vehicle task assignment problem. In Chapter 5,
we have investigated the precedence-constrained package delivery problem for a
truck and a micro drone to deliver packages to a set of dispersed customers where
only the micro drone performs the last mile package deliveries. Generally speak-
ing, more vehicles such as drones and trucks are needed to perform the package
deliveries if the number of customers to be served is large. Then, the sequence
for visiting the customers assigned to each drone should respect the precedence
constraints on serving the customers. Thus, it is of great importance to organize
a proper assignment of customers to the drones so that all the customers can be
quickly served while respecting every precedence constraint.





Bibliography

[1] Jose J Acevedo, Begoña C Arrue, Jose Miguel Diaz-Bañez, Inmaculada Ven-
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approximations for tsp with simple precedence constraints. Journal of Dis-
crete Algorithms, 21:32–40, 2013.

[10] Bela Bollobas. Modern Graph Theory, volume 184. Springer Science & Busi-
ness Media, 1998.

[11] Edoardo Bovio, D Cecchi, and Francesco Baralli. Autonomous underwater
vehicles for scientific and naval operations. Annual Reviews in Control, 30
(2):117–130, 2006.

[12] Bo Chen and Harry H Cheng. A review of the applications of agent tech-
nology in traffic and transportation systems. IEEE Transactions on Intelligent
Transportation Systems, 11(2):485–497, 2010.

[13] Han-Lim Choi, Luc Brunet, and Jonathan P How. Consensus-based decen-
tralized auctions for robust task allocation. IEEE Transactions on Robotics, 25
(4):912–926, 2009.

[14] Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models
and algorithms. Annals of Operations Research, 153(1):29–46, 2007.
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Summary

Multi-vehicle systems have been increasingly exploited to accomplish difficult and
complex missions, where effective and efficient coordinations of the vehicles can
greatly improve the team’s performance. Motivated by need from practice, we
study the multi-vehicle task assignment in various challenging environments.

We first investigate the task assignment for multiple vehicles in a time-invariant
drift field. The objective is to employ the vehicles to visit a set of target locations
in the drift field while trying to minimize the vehicles’ total travel time. Using
optimal control theory, a path planning algorithm is designed to generate the time-
optimal path for a vehicle to travel between any two prescribed locations in a
drift field. The path planning algorithm provides the cost matrix for the target
assignment, and generates routes once the target locations are assigned to the
vehicles. Using tools from graph theory, a lower bound on the optimal solution is
found, which can be used to measure the proximity of a solution from the optimal.
We propose several clustering-based task assignment algorithms in which two of
them guarantee that all the target locations will be visited within a computable
maximal travel time, which is at most twice of the optimal when the cost matrix is
symmetric.

In addition, we extend the multi-vehicle task assignment study in a time-
invariant drift field with obstacles. The vehicles have different capabilities, and
each kind of vehicles needs to visit a certain type of target locations; each target
location might have the demand to be visited more than once by different kinds
of vehicles. A path planning method has been designed to enable the vehicles to
move between two prescribed locations in a drift field with minimal time while
avoiding obstacles. This task assignment problem is shown to be NP-hard, and
a distributed task assignment algorithm has been designed, which can achieve
near-optimal solutions to the task assignment problem.

Furthermore, we study the task assignment problem in which multiple dis-
persed heterogeneous vehicles with limited communication range need to visit
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a set of target locations while trying to minimize the vehicles’ total travel dis-
tance. Each vehicle initially has the position information of all the targets and
of those vehicles that are within its limited communication range, and each target
demands a vehicle with some specified capability to visit it. We design a decentral-
ized auction algorithm which first employs an information consensus procedure
to merge the local information carried by each communication-connected vehi-
cle subnetwork. Then, the algorithm constructs conflict-free target assignments
for the communication-connected vehicles, and guarantees that the total travel
distance of the vehicles is at most twice of the optimal when the communication
network is initially connected.

In the end we exploit the precedence-constrained task assignment problem for
a truck and a micro drone to deliver packages to a set of dispersed customers
subject to precedence constraints that specify which customers need to be visited
before which other customers. The truck is restricted to travel in a street network
and the micro drone, restricted by its loading capacity and operation range, can
fly from the truck to perform the last mile package deliveries. The objective is
to minimize the time to serve all the customers respecting every precedence con-
straint. The problem is shown to be NP-hard, and a lower bound on the optimal
time to serve all the customers is constructed by using tools from graph theory.
Integrating with a topological sorting technique, several heuristic task assignment
algorithms are constructed to solve the task assignment problem.



Samenvatting

Multi-voertuig systemen worden in toenemende mate benut voor het volbrengen
van moeilijke en ingewikkelde missies, waarbij effectief en efficiënt coördineren
van de voertuigen kan leiden tot een aanzienlijke toename van de groepsprestatie.
Gemotiveerd door een behoefte uit de praktijk, bestuderen we de taakverdeling
van multi-voertuig systemen in verschillende uitdagende scenarios.

Als eerst onderzoeken we de taakverdeling voor meerdere voertuigen in een
tijdsinvariant drijfveld. Het doel is om de rijtuigen in te zetten voor het bezoeken
van een verzameling van doellocaties in een drijfveld en tegelijkertijd de reistijd
van de rijtuigen te minimaliseren. Gebruik makend van optimale regeltheorie,
wordt een routeplanning algoritme ontworpen voor het genereren van een tijds-
optimale route voor het voertuig tussen twee willekeurig gedefinieerde locaties
in een drijfveld. Het routeplanning algoritme voorziet de kosten-matrix voor de
taakverdeling en genereert routes voor de voertuigen nadat deze doellocaties zijn
toegekend. Met behulp van hulpmiddelen van graaftheorie wordt een ondergrens
voor de optimale oplossing gevonden. Hiermee kan dan de verkregen oplossing
worden vergeleken met de optimale oplossing. We dragen verschillende op clus-
tering gebaseerde taakverdeling algoritmes voor, waarvan twee garanderen dat
alle doellocaties worden bezocht binnen een maximale reistijd. Deze is hooguit
twee keer de optimale reistijd indien de kosten-matrix symmetrisch is.

Daarnaast breiden we het multi-voertuig taakverdeling probleem uit naar een
tijds-invariante drijfveld met obstakels. De voertuigen hebben verschillende ca-
paciteiten en elk soort voertuig dient een bepaald type doellocatie te bezoeken;
elke doellocatie kan meerdere keren worden bezocht door verschillende types vo-
ertuigen. Een routeplanning methode wordt ontworpen opdat de voertuigen in
een minimale tijd tussen twee gedefinieerde locaties in het drijfveld kunnen be-
wegen en obstakels te vermijden. Het is bewezen dat het taakverdeling probleem
NP-hard is en een gedistribueerd algoritme is voorgedragen dat vrijwel optimale
oplossingen van dit probleem kan behalen.
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Verder bestuderen we het taakverdeling probleem waarbij meerdere hetero-
gene voertuigen met een beperkt communicatie bereik verspreid zijn over het dri-
jfveld. Elk voertuig heeft initieel de positie informatie van alle doellocaties en
ook van de voertuigen die binnen haar communicatie bereik is. Elke doellocatie
vraagt naar een voertuig met een bepaalde capaciteit. We ontwerpen een gedecen-
traliseerd veiling algoritme die eerst een informatie consensus procedure gebruikt
om de locale informatie, van elke door communicatie verbonden deelnetwerken
van voertuigen, samen te voegen. Hierna wordt een conflict vrije taakverdeling
geconstrueerd voor de communicatie-verbonden voertuigen en wordt gegaran-
deerd dat de totale reis afstand van de voertuigen hoogstens twee keer de optimale
afstand is wanneer het communicatie netwerk inititeel verbonden is.

Als laatste, bekijken het prioriteit gebonden taakverdeling probleem voor een
truck en een micro drone voor het bezorgen van pakketen aan een set van klanten.
De klanten zijn onderhevig aan prioriteits voorwaarden die aangeven welke klanten
eerst bezocht dienen te worden. De truck kan alleen in een weg netwerk voort-
bewegen en de micro drone, gelimiteerd door de laadcapaciteit en werkbereik,
kan vanuit de truck vliegen om de laatste afstand af te leggen voor het bezorgen
van de pakketen. Het doel is om de tijd te minimaliseren voor het dienen van
alle klanten, rekening houdend met de prioriteit voorwaarden. Het probleem is
NP-hard en een ondergrens voor de optimale tijd is gevonden met behulp van hulp-
middelen uit graaftheorie. Verschillende heuristische taakverdeling algoritmes zijn
geconstrueerd en samengevoegd met een topologische soorteer techniek om het
probleem op te lossen.
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