8 research outputs found

    A bound on Grassmannian codes

    Get PDF
    We give a new asymptotic upper bound on the size of a code in the Grassmannian space. The bound is better than the upper bounds known previously in the entire range of distances except very large values.Comment: 5 pages, submitte

    Linear programming bounds for codes in Grassmannian spaces

    Full text link
    We introduce a linear programming method to obtain bounds on the cardinality of codes in Grassmannian spaces for the chordal distance. We obtain explicit bounds, and an asymptotic bound that improves on the Hamming bound. Our approach generalizes the approach originally developed by P. Delsarte and Kabatianski-Levenshtein for compact two-point homogeneous spaces.Comment: 35 pages, 1 figur

    Density of Spherically-Embedded Stiefel and Grassmann Codes

    Full text link
    The density of a code is the fraction of the coding space covered by packing balls centered around the codewords. This paper investigates the density of codes in the complex Stiefel and Grassmann manifolds equipped with the chordal distance. The choice of distance enables the treatment of the manifolds as subspaces of Euclidean hyperspheres. In this geometry, the densest packings are not necessarily equivalent to maximum-minimum-distance codes. Computing a code's density follows from computing: i) the normalized volume of a metric ball and ii) the kissing radius, the radius of the largest balls one can pack around the codewords without overlapping. First, the normalized volume of a metric ball is evaluated by asymptotic approximations. The volume of a small ball can be well-approximated by the volume of a locally-equivalent tangential ball. In order to properly normalize this approximation, the precise volumes of the manifolds induced by their spherical embedding are computed. For larger balls, a hyperspherical cap approximation is used, which is justified by a volume comparison theorem showing that the normalized volume of a ball in the Stiefel or Grassmann manifold is asymptotically equal to the normalized volume of a ball in its embedding sphere as the dimension grows to infinity. Then, bounds on the kissing radius are derived alongside corresponding bounds on the density. Unlike spherical codes or codes in flat spaces, the kissing radius of Grassmann or Stiefel codes cannot be exactly determined from its minimum distance. It is nonetheless possible to derive bounds on density as functions of the minimum distance. Stiefel and Grassmann codes have larger density than their image spherical codes when dimensions tend to infinity. Finally, the bounds on density lead to refinements of the standard Hamming bounds for Stiefel and Grassmann codes.Comment: Two-column version (24 pages, 6 figures, 4 tables). To appear in IEEE Transactions on Information Theor

    Coding on Flag Manifolds for Limited Feedback MIMO Systems

    Get PDF
    The efficiency of the physical layer in modern communication systems using multi-input multi-output (MIMO) techniques is largely based on the availability of channel state information (CSI) at the transmitter. In many practical systems, CSI needs to be quantized at the receiver side before transmission through a limited rate feedback channel. This is typically done using a codebook-based precoding transmission, where the receiver transmits the index of a codeword from a pre-designed codebook shared with the transmitter. To construct such codes one has to discretize complex flag manifolds. For single-user MIMO with a maximum likelihood receiver, the spaces of interest are Grassmann manifolds. With a linear receiver and network MIMO, the codebook design is related to discretization of Stiefel manifolds and more general flag manifolds. In this thesis, coding in flag manifolds is studied. In a first part, flag manifolds are defined as metric spaces corresponding to subsurfaces of hyperspheres. The choice of distance defines the geometry of the space and impacts clustering and averaging (centroid computation) in vector quantization, as well as coding theoretical packing bounds and optimum constructions. For two transmitter antenna systems, the problem reduces to designing spherical codes. A simple isomorphism enables to analytically derive closed-form codebooks with inherent low-implementation complexity. For more antennas, the concept of orbits of symmetry groups is investigated. Optimum codebooks, having desirable implementation properties as described in industry standardization, can be obtained using orbits of specific groups. For large antenna systems and base station cooperation, a product codebook strategy is also considered. Such a design requires to jointly discretize the Grassmann and Stiefel manifolds. A vector quantization algorithm for joint Grassmann-Stiefel quantization is proposed. Finally, the pertinence of flag codebook design is illustrated for a MIMO system with linear receiver
    corecore