260 research outputs found

    Cloud Watching: Understanding Attacks Against Cloud-Hosted Services

    Full text link
    Cloud computing has dramatically changed service deployment patterns. In this work, we analyze how attackers identify and target cloud services in contrast to traditional enterprise networks and network telescopes. Using a diverse set of cloud honeypots in 5~providers and 23~countries as well as 2~educational networks and 1~network telescope, we analyze how IP address assignment, geography, network, and service-port selection, influence what services are targeted in the cloud. We find that scanners that target cloud compute are selective: they avoid scanning networks without legitimate services and they discriminate between geographic regions. Further, attackers mine Internet-service search engines to find exploitable services and, in some cases, they avoid targeting IANA-assigned protocols, causing researchers to misclassify at least 15\% of traffic on select ports. Based on our results, we derive recommendations for researchers and operators.Comment: Proceedings of the 2023 ACM Internet Measurement Conference (IMC '23), October 24--26, 2023, Montreal, QC, Canad

    An Analysis of Internet Background Radiation within an African IPv4 netblock

    Get PDF
    The use of passive network sensors has in the past proven to be quite effective in monitoring and analysing the current state of traffic on a network. Internet traffic destined to a routable, yet unused address block is often referred to as Internet Background Radiation (IBR) and characterised as unsolicited. This unsolicited traffic is however quite valuable to researchers in that it allows them to study the traffic patterns in a covert manner. IBR is largely composed of network and port scanning traffic, backscatter packets from virus and malware activity and to a lesser extent, misconfiguration of network devices. This research answers the following two questions: (1) What is the current state of IBR within the context of a South African IP address space and (2) Can any anomalies be detected in the traffic, with specific reference to current global malware attacks such as Mirai and similar. Rhodes University operates five IPv4 passive network sensors, commonly known as network telescopes, each monitoring its own /24 IP address block. The oldest of these network telescopes has been collecting traffic for over a decade, with the newest being established in 2011. This research focuses on the in-depth analysis of the traffic captured by one telescope in the 155/8 range over a 12 month period, from January to December 2017. The traffic was analysed and classified according the protocol, TCP flag, source IP address, destination port, packet count and payload size. Apart from the normal network traffic graphs and tables, a geographic heatmap of source traffic was also created, based on the source IP address. Spikes and noticeable variances in traffic patterns were further investigated and evidence of Mirai like malware activity was observed. Network and port scanning were found to comprise the largest amount of traffic, accounting for over 90% of the total IBR. Various scanning techniques were identified, including low level passive scanning and much higher level active scanning

    SoK: A Data-driven View on Methods to Detect Reflective Amplification DDoS Attacks Using Honeypots

    Full text link
    In this paper, we revisit the use of honeypots for detecting reflective amplification attacks. These measurement tools require careful design of both data collection and data analysis including cautious threshold inference. We survey common amplification honeypot platforms as well as the underlying methods to infer attack detection thresholds and to extract knowledge from the data. By systematically exploring the threshold space, we find most honeypot platforms produce comparable results despite their different configurations. Moreover, by applying data from a large-scale honeypot deployment, network telescopes, and a real-world baseline obtained from a leading DDoS mitigation provider, we question the fundamental assumption of honeypot research that convergence of observations can imply their completeness. Conclusively we derive guidance on precise, reproducible honeypot research, and present open challenges.Comment: camera-read

    An exploratory study of techniques in passive network telescope data analysis

    Get PDF
    Careful examination of the composition and concentration of malicious traffic in transit on the channels of the Internet provides network administrators with a means of understanding and predicting damaging attacks directed towards their networks. This allows for action to be taken to mitigate the effect that these attacks have on the performance of their networks and the Internet as a whole by readying network defences and providing early warning to Internet users. One approach to malicious traffic monitoring that has garnered some success in recent times, as exhibited by the study of fast spreading Internet worms, involves analysing data obtained from network telescopes. While some research has considered using measures derived from network telescope datasets to study large scale network incidents such as Code-Red, SQLSlammer and Conficker, there is very little documented discussion on the merits and weaknesses of approaches to analyzing network telescope data. This thesis is an introductory study in network telescope analysis and aims to consider the variables associated with the data received by network telescopes and how these variables may be analysed. The core research of this thesis considers both novel and previously explored analysis techniques from the fields of security metrics, baseline analysis, statistical analysis and technical analysis as applied to analysing network telescope datasets. These techniques were evaluated as approaches to recognize unusual behaviour by observing the ability of these techniques to identify notable incidents in network telescope dataset

    Cloud Watching: Understanding Attacks Against Cloud-Hosted Services

    Get PDF
    Cloud computing has dramatically changed service deployment patterns. In this work, we analyze how attackers identify and target cloud services in contrast to traditional enterprise networks and network telescopes. Using a diverse set of cloud honeypots in 5 providers and 23 countries as well as 2 educational networks and 1 network telescope, we analyze how IP address assignment, geography, network, and service-port selection, influence what services are targeted in the cloud. We find that scanners that target cloud compute are selective: they avoid scanning networks without legitimate services and they discriminate between geographic regions. Further, attackers mine Internet-service search engines to find exploitable services and, in some cases, they avoid targeting IANA-assigned protocols, causing researchers to misclassify at least 15% of traffic on select ports. Based on our results, we derive recommendations for researchers and operators

    An exploration of the overlap between open source threat intelligence and active internet background radiation

    Get PDF
    Organisations and individuals are facing increasing persistent threats on the Internet from worms, port scanners, and malicious software (malware). These threats are constantly evolving as attack techniques are discovered. To aid in the detection and prevention of such threats, and to stay ahead of the adversaries conducting the attacks, security specialists are utilising Threat Intelligence (TI) data in their defense strategies. TI data can be obtained from a variety of different sources such as private routers, firewall logs, public archives, and public or private network telescopes. However, at the rate and ease at which TI is produced and published, specifically Open Source Threat Intelligence (OSINT), the quality is dropping, resulting in fragmented, context-less and variable data. This research utilised two sets of TI data, a collection of OSINT and active Internet Background Radiation (IBR). The data was collected over a period of 12 months, from 37 publicly available OSINT datasets and five IBR datasets. Through the identification and analysis of common data between the OSINT and IBR datasets, this research was able to gain insight into how effective OSINT is at detecting and potentially reducing ongoing malicious Internet traffic. As part of this research, a minimal framework for the collection, processing/analysis, and distribution of OSINT was developed and tested. The research focused on exploring areas in common between the two datasets, with the intention of creating an enriched, contextualised, and reduced set of malicious source IP addresses that could be published for consumers to use in their own environment. The findings of this research pointed towards a persistent group of IP addresses observed on both datasets, over the period under research. Using these persistent IP addresses, the research was able to identify specific services being targeted. Amongst these persistent IP addresses were significant packets from Mirai like IoT Malware on port 23/tcp and 2323/tcp as well as general scanning activity on port 445/TCP

    A Brave New World: Studies on the Deployment and Security of the Emerging IPv6 Internet.

    Full text link
    Recent IPv4 address exhaustion events are ushering in a new era of rapid transition to the next generation Internet protocol---IPv6. Via Internet-scale experiments and data analysis, this dissertation characterizes the adoption and security of the emerging IPv6 network. The work includes three studies, each the largest of its kind, examining various facets of the new network protocol's deployment, routing maturity, and security. The first study provides an analysis of ten years of IPv6 deployment data, including quantifying twelve metrics across ten global-scale datasets, and affording a holistic understanding of the state and recent progress of the IPv6 transition. Based on cross-dataset analysis of relative global adoption rates and across features of the protocol, we find evidence of a marked shift in the pace and nature of adoption in recent years and observe that higher-level metrics of adoption lag lower-level metrics. Next, a network telescope study covering the IPv6 address space of the majority of allocated networks provides insight into the early state of IPv6 routing. Our analyses suggest that routing of average IPv6 prefixes is less stable than that of IPv4. This instability is responsible for the majority of the captured misdirected IPv6 traffic. Observed dark (unallocated destination) IPv6 traffic shows substantial differences from the unwanted traffic seen in IPv4---in both character and scale. Finally, a third study examines the state of IPv6 network security policy. We tested a sample of 25 thousand routers and 520 thousand servers against sets of TCP and UDP ports commonly targeted by attackers. We found systemic discrepancies between intended security policy---as codified in IPv4---and deployed IPv6 policy. Such lapses in ensuring that the IPv6 network is properly managed and secured are leaving thousands of important devices more vulnerable to attack than before IPv6 was enabled. Taken together, findings from our three studies suggest that IPv6 has reached a level and pace of adoption, and shows patterns of use, that indicates serious production employment of the protocol on a broad scale. However, weaker IPv6 routing and security are evident, and these are leaving early dual-stack networks less robust than the IPv4 networks they augment.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120689/1/jczyz_1.pd

    Correlation and comparative analysis of traffic across five network telescopes

    Get PDF
    Monitoring unused IP address space by using network telescopes provides a favourable environment for researchers to study and detect malware, worms, denial of service and scanning activities. Research in the field of network telescopes has progressed over the past decade resulting in the development of an increased number of overlapping datasets. Rhodes University's network of telescope sensors has continued to grow with additional network telescopes being brought online. At the time of writing, Rhodes University has a distributed network of five relatively small /24 network telescopes. With five network telescope sensors, this research focuses on comparative and correlation analysis of traffic activity across the network of telescope sensors. To aid summarisation and visualisation techniques, time series' representing time-based traffic activity, are constructed. By employing an iterative experimental process of captured traffic, two natural categories of the five network telescopes are presented. Using the cross- and auto-correlation methods of time series analysis, moderate correlation of traffic activity was achieved between telescope sensors in each category. Weak to moderate correlation was calculated when comparing category A and category B network telescopes' datasets. Results were significantly improved by studying TCP traffic separately. Moderate to strong correlation coefficients in each category were calculated when using TCP traffic only. UDP traffic analysis showed weaker correlation between sensors, however the uniformity of ICMP traffic showed correlation of traffic activity across all sensors. The results confirmed the visual observation of traffic relativity in telescope sensors within the same category and quantitatively analysed the correlation of network telescopes' traffic activity

    A framework for the application of network telescope sensors in a global IP network

    Get PDF
    The use of Network Telescope systems has become increasingly popular amongst security researchers in recent years. This study provides a framework for the utilisation of this data. The research is based on a primary dataset of 40 million events spanning 50 months collected using a small (/24) passive network telescope located in African IP space. This research presents a number of differing ways in which the data can be analysed ranging from low level protocol based analysis to higher level analysis at the geopolitical and network topology level. Anomalous traffic and illustrative anecdotes are explored in detail and highlighted. A discussion relating to bogon traffic observed is also presented. Two novel visualisation tools are presented, which were developed to aid in the analysis of large network telescope datasets. The first is a three-dimensional visualisation tool which allows for live, near-realtime analysis, and the second is a two-dimensional fractal based plotting scheme which allows for plots of the entire IPv4 address space to be produced, and manipulated. Using the techniques and tools developed for the analysis of this dataset, a detailed analysis of traffic recorded as destined for port 445/tcp is presented. This includes the evaluation of traffic surrounding the outbreak of the Conficker worm in November 2008. A number of metrics relating to the description and quantification of network telescope configuration and the resultant traffic captures are described, the use of which it is hoped will facilitate greater and easier collaboration among researchers utilising this network security technology. The research concludes with suggestions relating to other applications of the data and intelligence that can be extracted from network telescopes, and their use as part of an organisation’s integrated network security system

    Evaluation of the effectiveness of small aperture network telescopes as IBR data sources

    Get PDF
    The use of network telescopes to collect unsolicited network traffic by monitoring unallocated address space has been in existence for over two decades. Past research has shown that there is a lot of activity happening in this unallocated space that needs monitoring as it carries threat intelligence data that has proven to be very useful in the security field. Prior to the emergence of the Internet of Things (IoT), commercialisation of IP addresses and widespread of mobile devices, there was a large pool of IPv4 addresses and thus reserving IPv4 addresses to be used for monitoring unsolicited activities going in the unallocated space was not a problem. Now, preservation of such IPv4 addresses just for monitoring is increasingly difficult as there is not enough free addresses in the IPv4 address space to be used for just monitoring. This is the case because such monitoring is seen as a ’non-productive’ use of the IP addresses. This research addresses the problem brought forth by this IPv4 address space exhaustion in relation to Internet Background Radiation (IBR) monitoring. In order to address the research questions, this research developed four mathematical models: Absolute Mean Accuracy Percentage Score (AMAPS), Symmetric Absolute Mean Accuracy Percentage Score (SAMAPS), Standardised Mean Absolute Error (SMAE), and Standardised Mean Absolute Scaled Error (SMASE). These models are used to evaluate the research objectives and quantify the variations that exist between different samples. The sample sizes represent different lens sizes of the telescopes. The study has brought to light a time series plot that shows the expected proportion of unique source IP addresses collected over time. The study also imputed data using the smaller /24 IPv4 net-block subnets to regenerate the missing data points using bootstrapping to create confidence intervals (CI). The findings from the simulated data supports the findings computed from the models. The CI offers a boost to decision making. Through a series of experiments with monthly and quarterly datasets, the study proposed a 95% - 99% confidence level to be used. It was known that large network telescopes collect more threat intelligence data than small-sized network telescopes, however, no study, to the best of our knowledge, has ever quantified such a knowledge gap. With the findings from the study, small-sized network telescope users can now use their network telescopes with full knowledge of gap that exists in the data collected between different network telescopes.Thesis (PhD) -- Faculty of Science, Computer Science, 202
    • …
    corecore