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Abstract

The use of network telescopes to collect unsolicited network traffic by monitoring unallo-
cated address space has been in existence for over two decades. Past research has shown
that there is a lot of activity happening in this unallocated space that needs monitoring
as it carries threat intelligence data that has proven to be very useful in the security
field. Prior to the emergence of the Internet of Things (IoT), commercialisation of IP
addresses and widespread of mobile devices, there was a large pool of IPv4 addresses and
thus reserving IPv4 addresses to be used for monitoring unsolicited activities going in
the unallocated space was not a problem. Now, preservation of such IPv4 addresses just
for monitoring is increasingly difficult as there is not enough free addresses in the IPv4
address space to be used for just monitoring. This is the case because such monitoring is
seen as a ’non-productive’ use of the IP addresses. This research addresses the problem
brought forth by this IPv4 address space exhaustion in relation to Internet Background
Radiation (IBR) monitoring.

In order to address the research questions, this research developed four mathematical
models: Absolute Mean Accuracy Percentage Score (AMAPS), Symmetric Absolute Mean
Accuracy Percentage Score (SAMAPS), Standardised Mean Absolute Error (SMAE), and
Standardised Mean Absolute Scaled Error (SMASE). These models are used to evaluate
the research objectives and quantify the variations that exist between different samples.
The sample sizes represent different lens sizes of the telescopes. The study has brought to
light a time series plot that shows the expected proportion of unique source IP addresses
collected over time.

The study also imputed data using the smaller /24 IPv4 net-block subnets to regener-
ate the missing data points using bootstrapping to create confidence intervals (CI). The
findings from the simulated data supports the findings computed from the models. The
CI offers a boost to decision making. Through a series of experiments with monthly and
quarterly datasets, the study proposed a 95% - 99% confidence level to be used. It was
known that large network telescopes collect more threat intelligence data than small-sized
network telescopes, however, no study, to the best of our knowledge, has ever quantified
such a knowledge gap. With the findings from the study, small-sized network telescope
users can now use their network telescopes with full knowledge of gap that exists in the
data collected between different network telescopes.
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1
Introduction

Internet Background Radiation (IBR) is defined as non-productive data packets on the
Internet, which target unused IP addresses, or ports where there is no network device set
up to receive them (Cooke et al., 2004; Pang et al., 2004; Wustrow et al., 2010; Guillot
et al., 2019). In theory, no traffic should ever arrive at such an IPv4 address, and so
such traffic is marked as an anomaly and thus recorded and analysed (Hunter et al., 2013;
Guillot et al., 2019; Richter and Berger, 2019). IBR data is typically collected by devices
known as network telescopes (Czyz et al., 2013; Irwin, 2013; Richter and Berger, 2019;
Torabi et al., 2020). The basis of a network telescope is to monitor these IP address
blocks on networks that have no services running on them (Hunter et al., 2013; Fachkha
et al., 2017; Bou-Harb et al., 2018). The value of network telescopes has been dealt with
thoroughly by other researchers to the point that its significance to cybersecurity research
cannot be overemphasised (Moore et al., 2004; Irwin, 2013; Bou-Harb et al., 2018). Often
this traffic shows evidence of either malicious activity or poor configuration (Pang et al.,
2004; Nkhumeleni, 2014; Bou-Harb et al., 2014; Richter and Berger, 2019). The poor
configuration could either be temporary or permanent (Nkhumeleni, 2014; Fachkha et al.,
2017).

1
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Given the fact that there are no legitimate hosts in an unused address block (Polakis
et al., 2011; Irwin, 2012; Czyz et al., 2013; Torabi et al., 2020), traffic must originate as
the result of poor configuration, back-scatter from spoofed source addresses, or scanning
from worms and other probings (Cooke et al., 2004; Wustrow et al., 2010; Richter and
Berger, 2019). What makes IBR very critical is its ability to provide an early-warning
detection mechanism for new threats and attacks (Harder et al., 2006; Bou-Harb et al.,
2014; Chatziadam et al., 2014; Fachkha and Debbabi, 2016).

The reason for the growing interest in the field of network telescopes, among other threats,
is partially attributed to the changing threat landscape (Shannon and Moore, 2004; Hunter
et al., 2013; Bou-Harb et al., 2016). The change in the threat landscape is caused by an
increase in self-propagating malicious viruses such as Witty Worm (Chen and Bridges,
2017; Fachkha et al., 2017; Torabi et al., 2020), Conficker Worm, GoBrut and Jokeroo
ransomware (Irwin, 2013; Zhang et al., 2015; Thomas and Galligher, 2018; Ochieng et al.,
2019; McElhinney and Curran, 2020) and the Mirai Botnets (Bertino and Islam, 2017).
This change in the threat landscape makes IBR an effective method for analysing and
quantifying Internet security phenomena.

1.1 Background

Levin and Schmidt (2014) explained that the modern Internet has long relied on the exis-
tence and use of IPv4 addresses. With fast-paced technology and new devices needing IP
addresses, exhaustion of the IPv4 address blocks globally has made it nearly impossible for
organisations to gain access to large blocks of IPv4 addresses to use for perceived ‘unpro-
ductive’ purposes (Arlot and Celisse, 2010; Irwin, 2011; Durand et al., 2011; Nyirenda-Jere
and Biru, 2015; Dainotti et al., 2016; Beeharry and Nowbutsing, 2016). In their work,
both Levin and Schmidt (2014) and Dainotti et al. (2016) stated that IP addresses are
allocated according to regions and because of that, some regions have already exhausted
their allocated lot of IPv4 addresses. According to Mamushiane et al. (2021), among
other researchers, Africa is among those continents whose IPv4 blocks have run out and
adoption to IPv6 is still proving to be difficult.

Dainotti et al. (2014, 2016) confirmed through two separate studies that the commercial-
isation of IPv4 addresses and the emergence of the Internet of Things (IoT) has rapidly
led to the exhaustion of IPv4 addresses. Due to this development, priority is given to
production systems that provide a service, thus reducing available IPs for threat intelli-
gence gathering. This has left most organisations with little to no option of using their
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IP addresses for purely threat intelligence gathering purposes through the use of network
telescopes. Of interest to this study is how IPv4 have been used to threat intelligence
gathering and other security applications. With a practical solution presented, the use
of IPv4 can continue to provide this valuable feedback to the security community. IPv4
address block usage also has significant information security applications, among which
include supporting detection of address squatting, informing host reputation systems, and
active measurement experiment design (Chatziadam et al., 2014; Dainotti et al., 2016).
With the exhaustion of IPv4 addresses, passive measuring of security threat activities has
been one of the activities that have been negatively affected (Chatziadam et al., 2014;
Dainotti et al., 2014).

1.2 Problem Statement

This research study provides an evaluation study to address the IPv4 shortage by showing
that it is possible to model a /24 IPv4 network block using smaller subnet samples ob-
tained from a /24 IPv4 address block. These smaller samples represent different sizes of
the smaller network telescope. This addresses the problem brought forth by the exhaus-
tion of IPv4 address blocks in relation to IBR’s ‘unproductive’ use. The problem in this
case being the inability of network telescope users to successfully configure a small-sized
network telescope and quantify how representable their small network telescopes are to
the larger network telescopes. It is the lack of research studies and tools that can quantify
the data collected from the small-sized network telescopes and compare it to the perceived
larger network telescopes.

There are a number of questions being addressed by this research study but at the top
of this list is the number of unique Destination IP (DSTIP) addresses a user needs. This
study is designed to evaluate the least possible number DSTIP addresses that a user
needs to use in setting up a small-sized network telescope. The aim of setting up a
small-sized network telescope is to assess how representative the events and behaviour
identified in a larger network telescope can be observed in small-sized network telescope.
By sub sampling the baseline data (/24 IPv4), this study will create samples which are
representative of small-sized network telescopes. The identified subnet sample (which
represents a smaller network telescope) ought to offer a reasonably high degree of accuracy
and a high level of confidence in the data to the user. Those samples that offer high
confidence and high accuracy scores will be given a high priority as best representatives
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of the baseline. With such scores the study will offer recommendations on which of the
available samples is the best fit.

In order to address this problem, this research study investigates the origin of the network
traffic, Destination IP (DSTIP) address and Destination ports (DPORT) from a /24 IPv4
net-block which acted as the benchmark dataset for this study. The source host’s IP
addresses are referred to as Source IP (SRCIP) throughout this study.

1.3 Research Goals

This research was conducted with the overall objective of evaluating the effectiveness
of small-sized network telescopes as Internet Background Radiation data source. The
researchers are fully aware that a sample of the baseline dataset will not fully replace the
baseline data. However, finding an alternative that offers a high level of confidence in
the samples drawn out from the baseline would be a better fit as compared to completely
eliminating the use of such powerful technology in threat intelligence gathering. In other
words, working with a smaller network telescope is better than not using one at all. This
study aims to quantify such differences in the data collected by a smaller network telescope
and a large one. Essentially the primary question was: if a sample is taken from a baseline
dataset, how representable can the sample be in relation to its baseline data? In order to
achieve this, this study primarily investigates the following points:

1. Assess if there is a continual direct relationship between the number of unique
source IP (SRCIP) addresses observed against the number of unique destination IP
(DSTIP) addresses used to collect data when normalised.

2. Compute the time frame needed to acquire specific proportions of the unique source
IP addresses from the baseline data. Compare these with the proportions that each
sample contains.

3. Identify how accurate a small-sized network telescope lens is at representing /24 IPv4
network telescope. This is in terms of the representativeness of the threat intelligence
data collected by each network telescope. This will be done by comparing and
contrasting the results computed from the data samples (which represent a smaller
lens) with that of the /24 IPv4 baseline dataset.
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4. Evaluate the differences that exist when the IPv4 addresses in the network sen-
sors are randomly selected compared to when the IPv4 addresses are selected in
‘traditional’ blocks aligning to contiguous CIDR subnetting.

1.4 Research Approach

This research was conducted with the overall objective of evaluating small aperture net-
work telescopes as a tool for threat intelligence gathering using IBR data. The basis for
this research was formed by understanding that relatively small-sized network telescopes
have been previously deployed for threat intelligence gathering (Harder et al., 2006; Wus-
trow et al., 2010; Benson et al., 2015; Zeghache and Yacine, 2020). Other researchers have
presented this work but what has not been presented yet, to the best of our knowledge, is
how representative these small-sized network telescopes are at mimicking key attributes
present in the baseline network telescope. In this research study, baseline network tele-
scopes were configured to using a /24 IPv4 address block. More details about the work
done on small network telescope can be found in Section 2.3.

The final study is data-driven, as such it presents the results of analysis using data col-
lected over three months from January - March 2021. The three months were collected
from a series of distinct network telescopes, which formed both monthly and quarterly
analyses in the data analytics chapters. All the data used was from three of the five net-
work telescopes maintained by the Rhodes University Security Networks Research Group
(SNRG). The data is summarised using data dictionaries in Section 4.1. Tools and
techniques were developed for the processing and analysis of the data.

During this research, exploratory data analysis was performed on the telescope data to
understand the composition of the datasets. Due to the nature of the research questions
being addressed, the study required the use of sampling techniques. Thus, random and
sequential sampling techniques were used to come up with data samples. The size of the
IPv4 subnets for the network telescopes was used to determine the different sizes of the
data sample. Included in this research are the mathematical models designed to quantify
the differences between the baseline datasets and the data samples drawn from them. The
models were inspired by research done by Hyndman and Koehler (2006) in their work on
forecasting time series data. The work done by Hyndman and Koehler (2006) is presented
in Section 3.9. This research found limitations in using the models that Hyndman and
Koehler developed, and as such, derivations were made to suit the needs of this research.
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Apart from sampling the /24 IPv4 address blocks, the study also imputed data using the
smaller samples of /24 IPv4 address blocks to regenerate the missing data points using a
technique called bootstrapping. The study focused on simulating the samples of IBR data
that were taken from the baseline datasets. The reason for this approach was to attempt to
reproduce the baseline dataset from its data samples using bootstrapping. An explanation
on the rationale of this research approach is presented in Section 5.1. Different samples
were used to bootstrap IBR data and confidence intervals derived from these simulations
by using the mean as the data’s population parameter of interest. Firstly, data were
sampled into different subnet equivalents (sample sizes that mimic the size of subnets
in IPv4 address blocks). In order to reproduce the number of data points found in the
baseline datasets, an hour was used to represent a single data point (see Section 5.2).
Thus, the number of data points was equated to the number of hours found in the dataset
under study. Where the monthly dataset is used, the baseline datasets have 744 data
points if the monthly data contains 31 days. The same approach was used for quarterly
datasets. More details are presented in Section 5.5.

The different subnet equivalents (data samples) were treated using these data points to
simulate the same number of data points. This was done to mimic a scenario where a
user would not have access to baseline data. The study attempts to quantify the levels
of confidence each bootstrap sample would give to the data user (read network telescope
user) should the user happen to have only such a handful of destination IP to be used for
passive monitoring of the network.

The mathematical models developed in this study proved to have multiple applications
outside the information security field. So Chapter 7 of this study is dedicated to ex-
ploring some of those practical applications in other fields. However, considering that
this research study was conducted with the intended use in networks and security space,
the discussions in this document focus on the use of mathematical models to quantify
the differences in IBR data. The testing on the performance of the mathematical models
happened in four phases. Firstly, the study validated the need for the proposed changes
to the already existing as the underlying conditions with which Hyndman and Koehler
(2006) did not accommodate such requirements. This required testing the model against
Hyndman and Koehler’s model using the same data. Secondly, the models were tested
against monthly datasets, which were later followed by quarterly datasets. All the models
and the test conducted can be found in Chapter 6 where more details are presented.
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1.5 Research Scope and Limitations

The scope and limitations of this research was inherent in the data that was used. The
network telescope sensors are a set of passive network monitoring devices designed to
record both active and passive IBR. This study used network telescopes that were config-
ured to do passive monitoring i.e. only receive incoming traffic without responding to it.
The analyses and evaluations in this research were limited to TCP Internet traffic. The
choice of focusing on TCP was arrived at due to its large volume collected in all of the
network telescopes under study. The study has presented an exploratory data analysis of
UDP traffic but no further analysis is done on this protocol. The data for UDP, ICMP
and GRE protocols is presented but due to its small volume as compared to TCP, it was
not used for any evaluation to address the research questions. In addition, this study did
not accommodate traffic from IPv6 address blocks as at the time of study the network
telescopes did not collect sufficient data to be used. Thus all analysis done was based on
IPv4 address blocks with /24 net-blocks being used as the baseline data for all network
telescopes.

1.6 Document Conventions

In the remainder of this document, as a general rule, a number of conventions can be seen.
The conventions apply to certain words, segments of text and numbers are represented
with different fonts, sizes and formatting to emphasise the presence of a keyword, phrase,
equation (model) or name that has been used sequentially throughout the document. This
section describes those conventions used as a guide.

Models: Mathematical models are centred and given equation numbers on the right-hand
margin of the page that they are used in. For example:

E = mc2 (1.1)

Number formatting: Numbers in this document are rounded to two significant figures
after the decimal point. A thousand separator used is a comma (,) and decimals are given
after a period (.). For example: 123,456.89
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IP Address: This research focuses primarily on IPv4 addresses. As such, when the term
IP address is used, it refers to IPv4 addresses. The source and destination IP addresses
are abbreviated as follows:

• Source IP: SRCIP

• Destination IP: DSTIP

Sample naming: The size of a data sample is defined by the number of unique destina-
tion IP addresses found in the specified subnet and their names are presented in italics.
Sequential samples have the name subnet following the size of the sample they represent
while random samples have the name subnet equivalent following the size of the sample
they represent. Preceding the size of the sample for sequential sampling is forward-slash
(/) as commonly used in Classless Inter-Domain Routing (CIDR). On the other hand,
preceding a random sample is a slash with a subscript e (/e). For example:

• Sequential sample of size 128: /25 subnet

• Random sample of size 128: /e25 subnet equivalent

Network Telescope naming: All network telescopes are named after the first octet
with which their address block represents. This is followed by a forward slash (/) and
the value of 8 to show that the naming represents a /24 IPv4 address blocks. The names
are presented in bold throughout the document. The other details of the IP addresses in
the network telescope are hidden for privacy. For example, using /24 IPv4 address blocks
naming convention a network telescope to 146 will be presented as: 146/8

Telescopes within 196/6 are named differently because Rhodes has more than one tele-
scope within this range. Thus to distinguish them, an additional feature is added to the
naming convention. This is presented as: 196-A/8

Dataset naming: Datasets are named after the network telescope from which they
were collected followed by the month and year of data collection. Sometimes datasets
are described after the network telescope they were collected from when dealing with
monthly analysis. For example, a dataset belonging to 146/8 network telescope collected
in January 2021 will be presented as: 146/8-012021
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Bootstrap Sample naming: Bootstrap samples are named after the network telescope
from which the data was collected followed by the name of their subnet equivalent. Be-
tween the name of the network telescope and the name of the subnet equivalent, there is a
dash (-). For example bootstrap sample belonging to 146/8 network telescope collected
from a /e24 subnet equivalent in January 2021 will be presented as: 146/8-012021- /e24

When presenting tables or figures belonging to a quarterly analysis, the following naming
convention is used: 146/8-2021 - [Jan - Mar]:

URLs: When a URL pertaining to websites or organisations is mentioned, it is given as a
footnote on the page of mention. Firstly, the URLs used provided up to date information
on the topic that could not be found in published articles. The second reason was the
need to minimise the break in the flow of the document, and to allow readers quick access
to the information pertaining to such work.

1.7 Document Structure

The remainder of this document is structured as follows:

Chapter 2 presents the first half of the literature review. The intention of this part
of the literature review is to provide the reader with a good understanding of the back-
ground material upon which this research is based. The research is data-based and before
diving into the nature of the data, this chapter explores the tools with which the data
was collected. This is where the background material about network telescopes and the
progress made since their inception is introduced. The chapter explores why network tele-
scopes are an integral part of information security and the implications that the growth
of the Internet of Things (IoT) has had on its usability. The chapter also explains the
exhaustion of IPv4 addresses and the implication of this on the use of network telescopes.
Internet Background Radiation (IBR) is the name given to the data collected by network
telescopes.

Chapter 3 discusses the second part of the review of literature related to this research.
An exploration of the statistical tools which have been used to process the data are ex-
plained here. In this chapter, the author explores tools like bootstrapping, which is a data
simulation statistical technique needed when one would want to evaluate the confidence
intervals given a scenario where a data user does not have complete datasets. Thus by
using the data parameters, a user is able to reproduce a dataset that has similar attributes
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as the original dataset. Since the network telescope data is of a time series nature, the
chapter also explored time series analysis. Another tool discussed in this chapter is the art
of mathematical modelling which forms one of the main building blocks of this research.

Chapter 4 focuses on the data that is used for this research. In this chapter, the reader
gets to know the sources of the data and where it was collected. The study used network
telescope data collected from Rhodes university. The data is split into two categories:
monthly and quarterly. For the monthly and quarterly analysis, data from three network
telescopes is used and its characteristics are also discussed in this chapter. The chapter
also explores the sampling techniques that were used to process the data into samples.
Since the study evaluated the effect of the size of network telescopes, sampling forms a
critical part of this study.

Chapter 5 is where the actual result-oriented data analysis begins. Two different boot-
strapping techniques are explored in this chapter and a comparison of which bootstrapping
technique is ideal for IBR data is discussed here. The research approach used to bootstrap
IBR is also discussed in this chapter. The results, discussions and recommendations of
bootstrapping also compose this chapter.

Chapter 6 introduces the models that have been developed in response to the research
question. In this chapter, four models built on the models that were developed by Hynd-
man and Koehler (2006) are presented. The chapter justifies the need for the models and
how they work. The underlying assumptions with which the models should operate are
also explained. The tests conducted on the models are evaluated using the monthly and
quarterly data sets. The data are split further into sequential and random sampling and
the results and discussion are computed and explained. The limitations of the model are
also explained in this chapter, which further pays attention to the feasibility of sampling
the datasets whose answer helps to address the primary research question.

Chapters in Chapter 7 presents consolidated findings and recommendations from the
research study. In this chapter, practical applications of the developed models are pre-
sented. The chapter makes it clear that the fields presented in it are just a sample of the
many fields in which the models can work. Practical applications of bootstrapping IBR
data are also presented in this section.

The document concludes the research with a discussion of the results achieved during
this study in Chapter8. The focus of this chapter is tying the results achieved to the
goals set at the start of this research. The chapter concludes with a discussion of future
development and research that could come from this study.



2
Literature Review: Network Telescopes

This chapter introduces the reader to, and facilitates a better understanding of the param-
eters with which this research was conducted. The chapter begins by introducing network
telescopes and how they collect IBR data in Section 2.1. This is followed by the dis-
cussion on IBR Data in Section 2.2. Considering that the research was inspired by the
desire for people to be able to use small-sized network sensors to collect data, the study
looked at related work regarding the feasibility of using small-sized network telescopes
and how others have done it in Section 2.3. There was a need to explain how useful the
IBR data has been as a source of threat intelligence data, thus Section 2.4 explains some
of the use cases of IBR data and how the field of Network security has drawn insights
from it. Section 2.5 expands more on the exhaustion of IPv4 addresses and the extent
to which the depletion of the IPv4 address blocks reached. This is a concept that was
introduced in Chapter 1. Section 2.6 starts by looking at time series analysis because
IBR data fits in this category. The study considers the significance of time series analysis
and issues that come with using it. The chapter closes with a summary in Section 2.7

11
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2.1 Network Telescopes

Traditionally, the operation of network telescopes has required larger contiguous block of
IP addresses (Moore, 2002; Moore et al., 2004; Bailey et al., 2005; Fachkha and Debbabi,
2016). These blocks can be as large as /8 or /16 net-blocks (Benson et al., 2015; Richter
and Berger, 2019). The IP address blocks ought to be contiguous because such a network
setup helps to understand which range of IP addresses are being targeted the most (Moore
et al., 2004). Running a contiguous block of IP addresses makes it easier to configure than
when the IP addresses are spread around (Moore et al., 2004; Irwin, 2011; Fachkha and
Debbabi, 2016). This network telescope setup is proving hard to emulate currently because
organisations are increasingly under pressure to utilise fully the address blocks they have
(Durand et al., 2011; Richter et al., 2015).

Network telescopes can be configured to either actively monitor the threat activities in the
unallocated blocks or set up for passive monitoring (Bailey et al., 2006; Hunter, 2018).
With network telescopes configured for active monitoring, the telescopes are designed
to enable them to probe more information from the source host to ensure that a TCP
three-way handshake occurs (Bailey et al., 2006; Hunter, 2018). This is just to establish
a connection, after which traffic is one way. This configuration gives them an edge in
threat intelligence gathering in that they are able to receive application-level data from
the first packet that may lead to a better understanding of an exploit attempt (Cooke
et al., 2004; Bailey et al., 2005, 2006). TCP uses a three-way handshake to establish a
reliable connection. The connection is full-duplex, and both sides synchronize (SYN) and
acknowledge (ACK) each other before any packet transmission is done (Nagai et al., 2018;
Dang et al., 2018). The exchange of these flags to establish a connection is performed
in three steps: SYN, SYN-ACK, and ACK as shown in Figure 2.1. However, in this
research study, the primary focus was on unidirectional traffic only as it relates to IBR.

On the other hand, network telescopes configured for passive monitoring, like the one
in this research study, are only capable of receiving incoming traffic, thus are unable to
record TCP based exploit data or details of misconfigured application requests (Bailey
et al., 2006). However, due to the availability of UDP and ICMP packets in their dataset,
passive telescopes are also capable of recording threats that do not need a three-way
handshake (Harder et al., 2006; Hunter, 2018; Bou-Harb et al., 2018). DDoS attacks can
also be detected in passive network telescopes (Harder et al., 2006). The telescopes used
in this study were configured to do passive monitoring, i.e. they do not accommodate the
TCP three-way handshake. Figure 2.2 shows a basic network telescope setup.
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Figure 2.1: TCP Three-way Handshake

Figure 2.2: Basic Network Telescope Setup (Irwin, 2011)

The primary focus in Figure 2.2 should be drawn to the fact that the network telescope
sensors are located outside the firewall to ensure that incoming traffic is not filtered.
What is common between active and passive monitoring is that, in each case, routable,
yet unused Internet Protocol (IP) addresses are used (Bou-Harb et al., 2018; Torabi et al.,
2020). Secondly, traffic destined to these inactive hosts has been observed to contain
suspicious and unsolicited activities such as random scans of vulnerable systems on the
other networks which are often used for Internet reconnaissance activities (Bou-Harb
et al., 2018; Torabi et al., 2020).

The reason for the growing interest in the field of network telescopes is partially attributed
to the changing threat landscape which brought about self-propagating malicious viruses
(Irwin, 2011; Bertino and Islam, 2017; Bou-Harb et al., 2018; Torabi et al., 2020). The
aforementioned were initially observed in IBR data when it was analysed, proving the
ability of IBR data to forewarn threat activities in a network (Shannon and Moore, 2004;
Irwin, 2012; Bou-Harb et al., 2016; Bertino and Islam, 2017). The change in the threat
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landscape has made IBR data even more valuable as it provides a unique way of looking
at the existing datasets and provides an early warning mechanism for new threats and
attacks (Harder et al., 2006; Torabi et al., 2020). The use of network telescopes, as a
means of collecting IBR data and analysing network telescope traffic, has been adopted
by security experts to understand the evolution of network threats and various potential
malicious activity (Wustrow et al., 2010; Irwin, 2011; Fachkha et al., 2012; Fachkha and
Debbabi, 2016; Bou-Harb et al., 2016, 2018). This was done in order to justify why it
is essential to have such a set-up for threat intelligence gathering. The reasons include
its ability to provide global network security events that are difficult to monitor using
the traditional node or end to end measurements (Moore et al., 2004; Irwin, 2011; Torabi
et al., 2020).

Bou-Harb et al. (2018); Piotr et al. (2019); Torabi et al. (2020) also explained that network
telescopes allow users to be forewarned of the threats that could be targeting their pro-
duction networks Network telescopes expose malicious threats targeting an organisation
and poor security configuration that could otherwise be missed. However, their major
drawback is that they are costly to maintain, especially when large contiguous net-blocks
are used to generate network telescopes and they can be polluted by misconfiguration
traffic (CAIDA, 2017; Bou-Harb et al., 2018). These costs, in terms of fees to Regional
Internet Registries (RIR) and Internet Service Provider (ISP), hold true for both IPv4
and IPv6 since acquiring more IP addresses requires more funds and the management
thereof.

As far as past research studies are concerned, it has been established that having large
address blocks is vital for monitoring globally scoped events (Moore, 2002; Cooke et al.,
2004; Fachkha and Debbabi, 2016; Torabi et al., 2020). Other researchers have also
reported that distributed sensors provide more addresses that increase visibility, which
in turn broadens coverage of threats (Yegneswaran et al., 2004; Bailey et al., 2005; Irwin
and Nkhumeleni, 2015; Bou-Harb et al., 2018). According to Chatziadam et al. (2014),
a distributed network telescope can be defined as network telescope set up that consist
of many network telescope sensors that reside on remote networks capturing traffic from
the unallocated address blocks and relaying it back to a central server so that it can be
classified and analyzed. Figure 2.3 shows an example of a distributed network telescope
set up.
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Figure 2.3: Distributed Network Telescope Setup (Chatziadam et al., 2014)

A distributed network telescope set-up means that more DSTIP addresses have been
used, typically on a diverse set of DSTIP ranges, leading to increased visibility. This,
in turn, improves detection time, duration precision, and helps in revealing the events
happening in the address blocks under observation (Chatziadam et al., 2014; Fachkha
and Debbabi, 2016). The set up shown in Figure 2.3 shows one sensor outside the
firewall while another sensor is inside the network telescope. This is dependent on the
network telescope user preference and the objective to be met by such a set up. It should
be noted that having network telescope sensors inside the firewall means that the traffic
will be filtered according to the firewall configuration which could clear out some threats
and thus less traffic collected.

Having more telescope sensors entails that the network telescope user sets network tele-
scopes that can operate in different address blocks of the network and thus maximises the
amount of data collected (Chatziadam et al., 2014; Irwin and Nkhumeleni, 2015). How-
ever, the cost of running such operations, maintaining the infrastructure (operation and
storage), and hosting many IP addresses on a network is quite exorbitant. For instance, in
2017 alone, the Centre for Applied Internet Data Analysis (CAIDA) spent over $3,500,000
maintaining their network telescope systems (CAIDA, 2017). In addition to this, there is
the shortage of IPv4 addresses which has been explained in detail in Section 2.5
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2.2 Internet Background Radiation Data

IBR data has proved to be useful in gathering threat intelligence data for over a decade
through the gathering of unsolicited network traffic (Polakis et al., 2011; Irwin, 2012,
2013; Fachkha and Debbabi, 2016). As explained in Chapter 1, IBR data consists of
non-productive data packets on the Internet, which target unused IP addresses, or ports,
where there is no network capable-device set up to receive them. A lack of hosts that
are connected to any network in these unallocated blocks of IP should imply zero traffic.
However, if traffic is registered in this region, then it can only be attributed to poor
configuration, back-scatter from spoofed source addresses, or scanning from worms and
other probings (Cooke et al., 2004; Bailey et al., 2005; Irwin, 2013). Worth mentioning is
that the IBR data collected by network telescopes is usually unidirectional. This is to say
that IBR normally collect incoming traffic and do not respond (Dainotti et al., 2014). The
word radiation in IBR is used because IBR data contain persistent traffic that originates
from many sources distributed all over the world (Wustrow et al., 2010; Fachkha and
Debbabi, 2016). This known attribute is critical in that it enables IBR data to provide a
valuable source for Internet situational awareness from a global perspective.

With the coming in of Internet of Things (IoT), IBR data is even more critical as recent
research showed that there are newly targeted ports observed in IBR that indicate emerg-
ing IoT malware/botnet (Fachkha et al., 2017; Torabi et al., 2020). Among these newly
target ports include destination port range 19328–19622 which according to Torabi et al.
(2020) had no known vulnerabilities at the time of their study. Other ports included in
the study they conducted include ports running Web Services on Devices API (WSDAPI)
which runs on port 5358 (for both TCP and UDP), Server Message Block (SMB) which
runs on 445/TCP, Remote Desktop Protocol which runs on port 3389 for both TCP and
UDP, and CPE WAN Management Protocol (also known as CWMP or TR-069)which
runs on 7547/TCP.

The increasing number of cyber attacks that target IoT devices because they are used
for data collection, monitoring, and information sharing, illustrate the rise of malware
tailored towards IoT devices (Bou-Harb et al., 2016; Torabi et al., 2020). The primary
objective of such tailor-made malware is to exploit vulnerable IoT devices (Bou-Harb
et al., 2016). In such cases, IBR data has been used to detect and characterize emerging
IoT malware/botnets because of its ability to provide an Internet-scale perspective of IoT
devices and their unsolicited activities over a period of time (Fachkha and Debbabi, 2016;
Bou-Harb et al., 2016; Torabi et al., 2020).
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Most well-known computer worms, common threats and scanning activities have been
investigated through IBR data (Benson et al., 2013). Among these include Distributed
Reflection Denial of Service (DRDoS) (Bou-Harb et al., 2014), Witty worm (Shannon and
Moore, 2004) Code Red and Slammer/Sapphire (Fachkha and Debbabi, 2016), Sality SIP
scan botnet (Bou-Harb et al., 2016) and Conficker worm (Irwin, 2012). These are among
the most analysed threats which have been analysed using IBR data. In cases where there
has been a lack of empirical data related to the widespread deployment of IoT devices
IBR data has proved to be very useful in providing insightful feedback needed for decision
making (Simmon et al., 2013; Bou-Harb et al., 2016). Even more importantly, IBR has
provided details showing early stages of malware contamination (infection) on machines,
thus offering an early warning detection mechanism to allow organisations to act in time
and curb the detected infection as early as possible (Irwin, 2011; Chatziadam et al., 2014;
Fachkha and Debbabi, 2016; Bou-Harb et al., 2016).

IBR has also been used to understand the security of Cyber-Physical Systems (CPS)
protocols where an observation was made on the lack of interest in UDP-based CPS
services, and the prevalence of probes towards the Inter-Control Center Communications
Protocol (ICCP) and Modbus protocols (Fachkha et al., 2017). Noteworthy is that CPS
is heavily used in different industries, which include but are not limited to aerospace,
automotive, energy, healthcare and manufacturing (Simmon et al., 2013; Fachkha and
Debbabi, 2016; Fachkha et al., 2017). IBR related projects are found to monitor various
cyber threat activities and are distributed in one-third of the global Internet (Fachkha and
Debbabi, 2016). All of this demonstrates how significant IBR data has been as a source
of valuable Internet-wide cyber threat intelligence. Section 2.4 offers more insight on
some of the use cases IBR data as a source of threat intelligence data.

Despite IBR data being of great value, not all organisations can afford to set it up and
operate its infrastructure. Among the most significant reasons are the shortage of IP
addresses in the IPv4 net-block and the cost of securing a large block of IP addresses
for threat intelligence gathering (Cooke et al., 2004; Durand et al., 2011; Irwin, 2011;
Fachkha and Debbabi, 2016). Organisations end up opting not to use the technique and
allocate the IP addresses for production. This is where this study found a research gap
and aims to address this shortage by offering an alternative. In this study, IBR data
samples obtained from a range of /24 IPv4 address blocks were used to conduct tests and
experiments in order to achieve the project’s research objectives. Details of the data used
can be found in Chapter 4
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2.3 Related Work on Small Network Telescopes

As explained in Section 2.1, the cost of maintaining large blocks of IP addresses for the
collection of IBR data remains a significant point of consideration. Though the exhaustion
IPv4 address space affects the allocation of large blocks in this space, it does not affect
IPv6. However, the cost of data collection with such network telescopes affects both IP
addresses. Large datasets also implies the need for large storage resource and more time
to make sense of the data. Having small sized network telescopes solves these problems.
Thus in this work, the primary investigator used subnets of a /24 network telescope. This
calls for a need to review literature to see how practical this is.

Past research (Harder et al., 2006) has also shown that it is possible to configure a small-
sized network telescope and collect threat intelligence data just as one would with a
larger telescope . Harder et al. (2006) defined small network telescope as that which can
accommodate a /24 net-block while Benson et al. (2015) varied between /16 net-block to
a /8 net-block as the definition of a small sized network telescope. In a study conducted
by Harder et al. (2006), it was established that virtually all traffic in a /24 IPv4 net-block,
when monitored by a network telescope, was found in the top 100 destination IP addresses.
This cements the notion that if properly sampled, the bigger net-block can virtually be
represented by a smaller subset of the IP addresses of a bigger telescope. Another study
conducted by Zeghache and Yacine (2020) showed that although large network telescopes
are preferred when collecting threat intelligence, small network telescopes can also be
configured to collect such kind of data. This was done in acknowledgement of the fact
that large network telescopes are still better at collecting more threat intelligence data
than small ones. However, they did not quantify the differences that exists in the threat
intelligence collected between the large and small sized network telescope. Zeghache and
Yacine (2020) used a /27 network telescope which accommodates 32 IP addresses.

Benson et al. (2015) conducted a series of experiments to assess how threat intelligence
data collected by the network telescope is affected by the network telescope size. The
theory presumed that by using smaller network telescopes, they should be able to ob-
serve fewer unique SRCIP addresses and even those observed should be less frequent as
compared to a larger network telescope. This they did by varying the size of the net-
work telescope lens between /16 to /8. Their data contained traffic that had Conficker’s
PRNG. In each of the sizes, they were able to find traits of some of the unique SRCIP ad-
dresses observed in the baseline dataset, but the volume of these unique SRCIP addresses
changed. This in turn affected the overall volume of the traffic contained in each network
telescope lens, which directly affects the volume of threat intelligence data.
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Distributed network telescopes have also been used with small-sized network telescopes for
observing different segments of the network with their output combined into one (Moore
et al., 2004; Irwin, 2013; Irwin and Nkhumeleni, 2015). This offers a collated view of
the events across the observed network address blocks because it ensures that the small-
sized telescopes cover different parts of the network. Another element that has allowed
the configurations of small-sized network telescopes is that most of the dominant SRCIP
addresses (SRCIP addresses that send the most traffic) send traffic to all DSTIP addresses
in the network telescope (Richter and Berger, 2019). This ensures that, even if a small-
sized network telescope is used, there is still a high chance of getting a significant amount
of threat intelligence from the network traffic that they collect. Thus, by collecting data
for longer periods, the discrepancies that may exist between large network telescopes and
small network telescopes can be significantly reduced.

Even more significant are the scenarios where network telescopes have shown evidence of
widespread localised scanning. This is to say that localised scanning are scenarios where
threat actors target a specific individual network as explained by Richter and Berger
(2019). In cases like these, the difference between large network telescopes and small-
sized ones is significantly reduced since the threat actor is aiming at maximising the
number of scans within the targeted network. In this way, it may not come as a surprise
where small network telescopes end up containing traffic that is similar in terms of the
number of unique SRCIP addresses and the kind of threat intelligence contained in it.
The scenario is different when Internet-wide scans are used where threat actors are more
interested in the overall state of vulnerable networks on the Internet. In such cases, large
networks may contain more SRCIP addresses because they have a wider coverage than
smaller network telescopes.

Moore et al. (2004) have shown that a large-sized network telescope leads to larger
datasets, and thus, more unsolicited events that result in more detail of network events
are observed. The study also proved that the size of a network telescope has a high im-
pact on the observation of a specific event within a given time frame. This is to say that
using smaller network telescopes presents a chance of missing out on other network events
irrespective of where the small-sized network telescope is placed on the network. This
was achieved by using probability statistics of observing an event on a single host in a
given net-block (Moore et al., 2004). What was established from the study conducted by
Moore et al. (2004) was that the smaller network telescopes take a relatively longer time
to observe specific events as compared to a larger telescope given the same likelihood of
occurrence.
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A separate study conducted by Irwin (2013) revealed that the observations found in
smaller network telescopes when analysing the Conficker worm were similar to those
observed in much larger network telescopes. In work done by Zhan et al. (2014), the
authors acknowledged that while it is possible to configure small-sized network telescopes,
substantially smaller network telescopes might not be as useful as a large telescope. This is
a study that used network telescopes of sizes /8, /16 and /24 net-blocks. Thus the smaller
the network telescope the higher the likelihood of missing other aspects of the network
traffic. This study, however, did not quantify the volume of threat intelligence data
that can potentially be missed when working with smaller network telescopes. Wustrow
et al. (2010) also conducted a study in which it was observed that a small portion of
destination or source address space were used i.e. most of this traffic is directed towards
a small number of destinations in one-eighth of the overall DSTIP addresses.

To the best of the researcher’s knowledge and based on literature reviewed, a comparison
to quantify the gap in size as to how much a larger network telescope can be represented
by a small-sized network telescope has not been published yet by other authors. This is
what has been laid out in Section 1.3 as one of the research objectives. What is known
thus far is that a larger network telescope collects more threat intelligence data than a
small-sized network telescope (Moore et al., 2004; Yegneswaran et al., 2004; Harder et al.,
2006; Pemberton et al., 2007). Pemberton et al. (2007) observed that monitoring global
traffic routed to a single host in a network leads to the same outcome (larger telescopes
collecting more threat intelligence data than smaller ones).

It is on this notion presented by other researchers that this study opted to build by
observing the sampled IP addresses and observing how long it would take to observe a
specific proportion of the baseline dataset.

2.4 Network Telescope and IBR Data Use Cases

During this research study, work was done to see the viability and some good use cases of
IBR data and network telescopes in general. This was a build-up of what other researchers
have done relating to good uses of network telescopes and why they are significant to threat
intelligence gathering. One of the experiments conducted by this research’s primary in-
vestigator was evaluating the re-emergence of the SQL Slammer worm which did reappear
in November and December 2016 (Chindipha and Irwin, 2017). This re-emergence was
first reported in December 2016 by Check Point1 researchers who confirmed that SQL

1https://research.checkpoint.com/2017/aprils-wanted-malware/
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Slammer worm was back online targeting the same ancient flaw in Microsoft SQL server
2000 buffer overflow vulnerability. Using IBR data, the work done here, Chindipha and
Irwin (2017) confirmed that Rhodes University’s network telescopes had picked up spiked
attributed to SQL slammer worm i.e. the IBR data detected SQL Slammer worm. Us-
ing UDP traffic, the signature of SQL Slammer worm was identified until March 2017.
Considering that network telescopes act as early warning detection systems, it is possible
that the re-emergence of SQL slammer worm could have been expected and measures put
in place to mitigate it before any damage could be done. It is important to note that
the damage caused by SQL slammer when it re-emerged was not as bad as it did in early
2000.

In another study conducted by Irwin (2012), it was observed that the pattern and be-
haviour seen by the effects of the Conficker worm were also reflected in the network
telescope. Rhodes University network telescopes showed unusual volume of traffic that
was not observed prior to the emergence of the Conficker worm. All this traffic was tar-
geting destination port 445/TCP. The telescopes picked spikes of network traffic for a
period of 14 months between August 2005 to September 2009. This was the same period
when Conficker was in its prime. This is the same malware that exploited a vulnerability
in the Microsoft RPC; a vulnerability that was also exploited by the Blaster and Welchia
(Nachi) worms (Irwin, 2011).

Shannon and Moore (2004) used IBR data to measure the rate at which the Witty worm
spread, which offered a global view of the spread of many Internet worms. In the process
of doing this, Shannon and Moore (2004) showed how many computers were affected
every two minutes, which later escalated to the pattern of spread every hour. Using such
knowledge, measures were put in place to combat the spread. Such insight from the
network telescope proved pivotal in understanding the worm’s behaviour. Another study
conducted by Harder et al. (2006) showed that IBR data gave a good understanding of
Internet worm and virus Attacks on an active network. In this study (which has partly
being explained in Section 2.3), results showed that traffic is not as random as it is
thought to be as top 10 destination ports and top 100 DSTIP addresses account for
virtually all the traffic collected. In addition to this, Fluid models which normally work
with systems containing destination hosts that are prone to malicious software attacks
have been improved, trained, and evaluated to understand worm behaviour using IBR
data (Zou et al., 2003). Code Red worm was one of the malware whose understanding
has improved since network telescopes were acknowledged as a good source of threat
intelligence (Zou et al., 2003). Organisations and security companies such as the Computer
Emergency Response Team (CERT), CAIDA, and SANS Institute have their own network
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telescopes that they use to monitor the Internet and analyse unusual network traffic
patterns (Zou et al., 2005). Advice is then disseminated to organisations once their
security experts identify the cause of such moments and appropriate solutions are offered.

IBR data has also been used successfully to characterise cybersecurity posture in a data-
driven study. Cybersecurity posture can be defined as the strength of the cybersecurity
controls and protocols for predicting and preventing cyber threats, and the ability to
act and respond during and after an attack (Bahuguna et al., 2020). The intention of a
cybersecurity posture is to provide a high level indicator to general risk categories (Xu,
2019). Usually, such an evaluation is done using the status of an enterprise’s networks,
information, and systems based on information security resources (e.g., people, hardware,
software, policies) and capabilities in place to manage the defence of the enterprise and to
react as the situation changes. However, in this data-driven characterisation cybersecurity
posture study, Zhan et al. (2014) conducted experiments and proved that the sweep-time
is supposed to be characterised as a stochastic process rather than a random variable.
Sweep-time was defined as the time taken for the majority of the network telescope DSTIP
addresses to be probed at least once throughout the observation period. In the same study,
it was observed that the total SRCIP addresses (which represent the number of attackers
and attacks) observed by the network telescope is largely determined by the number of
attackers from a single geolocation (city or country). In the same study, propositions
were made to formalise the concept of cybersecurity posture from the number of victims
(DSTIP addresses that are attacked), the number of attackers that are observed by the
telescope, and the number of attacks that are observed by the telescope using a time series
analysis.

Due to the nature of how network telescopes operate, i.e. acting as an early warning
system, data collected from these network telescopes have been used to identify zero-day
exploits and mitigate Advanced Persistent threats (Maglaras et al., 2018). In a separate
study conducted by Blaise et al. (2020), they used machine learning to detect zero-day
attacks using port-based approach. Their study used University of California San Diego
Network Telescope dataset largely composed of botnet scans. In this study, they did
observe certain indicators (infection of hosts or device fingerprinting) in their datasets
that could have easily been detected to prevent the Mirai botnet attack. Using IBR data,
an anomaly detection technique was developed that allowed the research investigators
to identify main changes in the usage of specific ports as desired to identify botnets. In
addition to this, IBR data has been used to assess the level of security threat that network
scans can have on application software (Fachkha and Debbabi, 2016; Houmz et al., 2021).
These vulnerabilities in the software are identified using network scans when an external
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host (SRCIP address in the case of network telescopes) probes the networks. Network
telescopes are used as a threat intelligence to capture large-scale scans and how worms
spread on the network. Considering that port scanning is one of the techniques used when
attackers are gathering information about their target, it makes network telescopes a good
source of such data (Fachkha and Debbabi, 2016). These scans come with vulnerabilities
that the scanned network has. Such vulnerability disclosure impacts different aspects
of the information security domain as systems’ vulnerabilities become public knowledge,
which can easily be exploited if not patched (Richter and Berger, 2019). Among some
of the information revealed through such disclosures include: when last a software was
patched and how quickly it can be patched, what exploit should be used, and the volume
of attacks and scans. Thus by using network telescopes, a network telescope user is
allowed to trace tracking scanning activity of their software from threat actors. The
network telescope user can then patch their software accordingly using IBR data. This
becomes more critical when specific software is a victim of a localised scan which poses a
potentially greater threat as compared to an Internet-wide scan.

What is common in each of the malware analysis use cases conducted by the network
telescopes datasets is that IBR data can be used to identify worms and track how these
worms spread across the Internet. This could prove difficult to analyse during an actual
attack in a live network. With IBR data, the malware behaviour and patterns can easily be
characterised and identified using IBR data. Using location of SRCIPs in IBR data during
data analysis can help security experts know the geolocation of most of the malware.
All these offer a good base for threat intelligence which, due to the nature of network
telescopes, could not be clearly understood at a cheaper cost but also be prevented in
time or aid to avoid future attacks. Based on these few cases, one can see how IBR data
is such a valuable asset of threat intelligence data and its applications and usage will still
be viable, particularly in an age where everything is going digital.

2.5 IPv4 Address Exhaustion

IPv4 address exhaustion is the depletion of the pool of unallocated IPv4 addresses (Zander
et al., 2013; Dainotti et al., 2016; Beeharry and Nowbutsing, 2016) i.e. limited supply
of Internet Protocol version 4 (IPv4) addresses. The original architecture IPv4 provides
232 (4,294,967,296) IP addresses (Cotton, 2001; O’Neill et al., 2001), but the emergence
of Internet of Things (IoT), among other reasons, has led to a dramatic growth rate that
was not initially anticipated when Internet was invented (Bush, 2011; Durand et al., 2011;



2.5. IPV4 ADDRESS EXHAUSTION 24

Zander et al., 2013; Dainotti et al., 2016). However, in early 2000, with the introduction
of new devices (like smartphones for example) that also needed IP addresses to connect
to the Internet, other researchers were able to forecast the possibility of such a depletion
(Arkko and Townsley, 2011; Zander et al., 2013; Beeharry and Nowbutsing, 2016; Dainotti
et al., 2016). This, coupled with the coming in of novel technological advances such as
5G, Internet of Things (IoT) and smart cities, has led to the rapid decline of IPv4 address
worldwide (Mamushiane et al., 2021). As of 20152, it was recorded that four Regional
Internet Registries (RIR) were unable to allocate new IPv4 addresses to users. Internet
Assigned Numbers Authority (IANA)3, a standards organization that oversees global IP
address allocation and autonomous system number allocation, among other things (Cotton
and Vegoda, 2010; Durand et al., 2011), made plans that allowed the Internet to continue
its amazing growth and promote global innovation. As of October 2016, IANA changed
its name to Public Technical Identifiers (PTI)4

Although this was a good development, such a change in protocol usage has not been
adopted fully by all Internet users (Bush, 2011; Durand et al., 2011; Zander et al., 2013;
Dainotti et al., 2016). As explained in Section 1.2, unlike other parts of the world like
America, Asia, and Europe, Africa is one of those continents where the Internet Service
Providers (ISP) do not offer widespread support for IPv6, particularly for commercial use
(Perkins, 2010; Beeharry and Nowbutsing, 2016; Mamushiane et al., 2021). Commercial
users are the major contributors to innovation and with the scarcity of IPv4 addresses,
they can be negatively affected (Bush, 2011). Despite the campaigns that have happened
in Africa to raise the urgency and need to migrate to IPv4, not many countries have
made the successful transition (Nyirenda-Jere and Biru, 2015; Livadariu et al., 2017;
Mamushiane et al., 2021).

The depletion of the availability of large IPv4 network blocks is of great concern, partic-
ularly in the cybersecurity field that often relies on acquiring large network blocks for its
threat intelligence gathering (Pang et al., 2004; Bailey et al., 2005). Large net-blocks are
significant because they give a broad spectrum from which to observe threats and thus
are better placed to make a more informed decision than what one would get if a smaller
network telescope or data were used (Atifi and Bou-Harb, 2017; Piotr et al., 2019).

There have been at least 200 training sessions in 45 countries in Africa to raise awareness
of the urgency needed to migrate to IPv6, however, it has been difficult to track the

2https://www.nro.net/about/rirs/
3https://www.iana.org/
4https://pti.icann.org/
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progress of what these sessions have achieved (Livadariu et al., 2017). In addition to
this, the rate at which the African population is growing coupled with the growth rate
of Internet users in Africa makes this problem more severe than America, Asia, and
Europe, where organisations have started using IPv6 and are getting support (Perkins
et al., 2004; Nyirenda-Jere and Biru, 2015; Livadariu et al., 2017). Africa does not have
enough IPv4 address blocks to support this massive growth in Internet usage (Livadariu
et al., 2017). There has been much resistance in the adoption of IPv6 in Africa, with only
20% of African autonomous systems publicly advertising IPv6 prefixes (Livadariu et al.,
2017; Mamushiane et al., 2021). Apart from AFRINIC, all Regional Internet Registries
(RIRs) have allocated their last /8 address blocks of IPv4 (Durand et al., 2011; Livadariu
et al., 2017; Hamarsheh et al., 2021). Though efforts have been made to migrate to IPv6,
deployment to IPv6 has been very slow partly due to a lack of commercial support from
ISPs and end users are not directly benefiting from the transition (Livadariu et al., 2017;
Hamarsheh et al., 2021; Mamushiane et al., 2021).

The problem gets worse with the increase in the use of mobile devices, adoption of mobile
banking, coupled with the growth rate of Internet users in Africa (Nyirenda-Jere and
Biru, 2015; Mamushiane et al., 2021). These factors make this problem more severe
on the continent compared to other parts of the world (Perkins et al., 2004; Nyirenda-
Jere and Biru, 2015; Livadariu et al., 2017). This also means that the problems that
were anticipated in early 2000 have a high probability to impact Africa and any other
continent that has not yet migrated to IPv6. It is important to note that this IPv4 address
exhaustion is a global problem5 and not an African problem only as this can be seen in
Asia and Europe as well (Perkins, 2010; Zander et al., 2013; Beeharry and Nowbutsing,
2016; Lencse and Kadobayashi, 2019).

For instance, there are problems like a network operator being unable to receive large IPv4
blocks from RIRs that are sufficient to address any significant Internet infrastructure for
its customers6 (Cotton and Vegoda, 2010; Bush, 2011). When things like this happen,
organisations have had to adopt new policies that allow IPv4 address blocks to be trans-
ferred between consenting parties, under specific conditions, just to remain in operation
(Bush, 2011). Alternatively, ISPs will have to allocate temporary lease of blocks of IP ad-
dresses to their customers if they have them available or allow the co-existing of IPv4 and
IPv6 in their network as they slowly transition (Lencse and Kadobayashi, 2019). When
the lease expires, the ISP will need to re-assign the block of IPs to a different customer
(organisation). For continual usage, organisations must motivate why they need more IP

5https://www.nro.net/ipv4-free-pool-depleted
6https://afrinic.net/exhaustion
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addresses and how they plan to use them. It won’t be long before Regional Internet Reg-
istry (RIR) for Africa (AFRINIC7) and Internet Service Providers (ISPs) start denying
requests for IPv4 address blocks as it did with other RIRs (Bush, 2011; Zander et al.,
2013; Mamushiane et al., 2021). This leaves them only on open market and only acquired
at exorbitant costs.

This is not to say that AFRINIC is not doing anything regarding the promotion of mi-
grating to IPv6 or how to manage the currently available IP addresses, as evidence8 shows
otherwise. AFRINIC has embarked on a journey to ensure a phased approach9 in transi-
tioning from IPv4 to IPv6, but this project needs significant investment from all parties
involved (Arkko and Townsley, 2011). There is progress, but it is difficult to track the
efforts that have been put in place through training and implementation of supporting
systems (Livadariu et al., 2017; Mamushiane et al., 2021). Such exhaustion of IP ad-
dresses threatens the usability of network telescopes as no organisation will be willing
to reserve IP addresses for passive monitoring (Chindipha et al., 2019b). Neither ISPs
nor AFRINIC can approve of such a proposal to lease the depleted IPv4 for what is seen
as ‘non-productive’ use such as threat intelligence gathering (Zander et al., 2013). It is
from this context of knowing the extent to which IPv4 exhaustion has occurred that this
research was conducted. Worth noting is that the practical applications of this study go
beyond IPv4 address exhaustion. Its application fits with the use of IPv4, but it is the
issue of exhausting that necessitated this study.

2.6 Time Series Analysis

Time series analysis has been used in different sectors of the industry, be it in economics
when dealing with stock market prices, geophysics when dealing with earth tremors, and
meteorology when predicting weather conditions. These time series can be categorised
into three main categories:

1. Stationary and non-stationary time series (Huang et al., 1998)

2. Long-term memory and short-term memory time series (Granger and Joyeux, 1980)

3. Equidistant and non-equidistant time series (Rüping, 2001)
7https://afrinic.net/
8https://afrinic.net/policy/manual
9https://afrinic.net/20200113-afrinic-enters-ipv4-exhaustion-phase-2
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Stationary time series are those that have constant statistical values like mean, standard
deviation and variance, while non-stationary time series are those that have such statistical
values (moving average, mean, variance, std) fluctuating over time (Cogley and Nason,
1995). Long-term memory time series are those whose rate of dependency between newly
observed values and their predecessors have their auto-correlation function declining at a
very slow rate (Granger and Joyeux, 1980). On the other hand, short-term time-series are
those whose auto-correlation function decreases rapidly between newly observed values
and their predecessors (Granger and Joyeux, 1980).

Lastly, equidistant time series are those whose data values are recorded at a constant
period (Rüping, 2001). On the other hand, non-equidistant time series have no fixed
time frame as the time of data collection varies from time to time (Rüping, 2001). For
instance, examples of equidistant time series include total sales every month and quarterly
observations of volumes of US E-Commerce (Milhoj, 2013).

IBR data fits into the time-series data category because of the time associated with
it. IBR data for this study was collected daily for years, which appends time to it.
Due to this daily collection, it would be classified as an equidistant time series when
aggregated by frequency (daily, weekly, month etc.) and it is non-stationary time series
because its statistical values change with each collection when binned by time. Due to its
random nature, it cannot be classified as long-term memory since a day’s traffic could be
independent of its preceding date.

Time-series analysis is performed to understand the components and behaviours of the
time-series coupled with the trend behaviour T(t), seasonality factor S(t), cyclic nature
C(t) of the time series under study, or the randomness of the series R(t) (Ostashchuk,
2017). The researcher identifies factors that are responsible for any of the behaviours
listed in the preceding sentence in the process of doing the analysis (Varouchakis and
Hristopulos, 2013). Equations 2.1 and 2.2, Z(t) denote the time series at a given time
t (Ostashchuk, 2017). In addition to this, time series analysis allows us to have some
ability to predict the future behaviour of the time series under study (Ostashchuk, 2017).
This study will primarily focus on the first reason as predicting the future behaviour of
the time series is not part of its scope.

In order to get accurate results, the analyst needs to identify the right model for the time
series data under study. This is primarily dependent on the nature of the growth rate.
Depending on how quickly the growth rate of a time series changes over time, Wei (2006)
found that a time series could be classified as an additive model or multiplicative model.
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Ostashchuk (2017) explained that a multiplicative model is applicable to those models
that have a fast growth rate while the additive model is used for those that have a slow
growth rate.

Z(t) = T (t) + C(t) + S(t) +R(t) · · ·Additive−Model (2.1)

Z(t) = T (t)C(t)S(t)R(t) · · ·Multiplicative−Model (2.2)

For example, consider airlines ticket sales over the year. It is a well-known fact that prices
for flights peak during the festive season (December - January). If each year the prices
by the airlines are increased by a specific amount, let us say R200, then this becomes
an additive model because our seasonality factor is a constant value. However, if the
airlines want to take advantage of Rand fluctuations over the year (be it gain in value or
loss) then instead of a fixed amount, the prices may increase by 17%. This makes our
model multiplicative and in each of the cases, the seasonality factor is accounted for. In
both additive and multiplicative models, the seasonality factor (S(t)) which signifies the
repetitive behaviour of time data over an identified period is identified (Kalekar, 2004).
The equation for these models is shown in equations 2.1 and 2.2 . The data for this study
falls in the multiplicative model because the fluctuations of the IBR data do not have a
fixed growth value. As we move from the first day of the month to the last, there are
random changes that could be identical for certain months, but the value of changes is
not the same. Its random nature makes it ideal for multiplicative models than additive
ones.

In time series, the correlation can exist between adjacent values or seasonally (Matalas,
1967). This is to say that entities from two adjacent seasons are performing similarly to the
point that a pattern can be formed (Matalas, 1967). Thus, the correlation coefficient can
be computed using days within a week (adjacent values). Alternatively, if the seasonality
is a week, then one can compute correlation weekly. This line of thought can work with
monthly computations or quarterly.

Time series is critical to this study because a majority of the analysis that is conducted is
over time series data. This is both in terms of graphical analysis, regression analysis, and
mathematical computation where the mathematical models have a time bound to them.
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2.6.1 Correlation of Time series

Correlation is a process of establishing a relationship that exists between two or more
variables with the aim of quantifying how strongly the variables are connected (Zebende,
2011). In other words, correlation measures the degree of association between variables of
interest. Initially, the process was introduced when working with signals, but over time,
time series analysis has incorporated correlation techniques (Kohn, 2006). This works for
both stationary and non - stationary time series (Horvatic et al., 2011).

There are several forms of correlation but those of particular interest to this study are
autocorrelation and cross-correlation (Zebende, 2011). This is the case because, essen-
tially, subnet equivalents are samples of the baseline dataset which would indirectly make
it autocorrelation to see the similarity between the baseline dataset and its subnet equiv-
alent. However, since certain data points are missing in the subnet equivalents, the
cross-correlation helps us to understand how one variable in the dataset affects the other
to bring about the differences observed (Kohn, 2006). Cross-correlation in this case is
defined as the process of establishing a relationship of two different time series to detect if
there is a connection between metrics (Bourke, 1996). On the other hand, autocorrelation
compares a time series with itself at a different time with the purpose of detecting repeated
patterns or seasonality (Kohn, 2006). Each of these correlation techniques measures the
degree of association, either with itself or another time series (Bourke, 1996).

2.6.2 Applications of Time series Data

The usefulness of the data collected is largely dependent on when the data collected will
be applied or the time frame with which the data was collected. Decisions made based
on data have a time factor added to them. In other words, time is a very crucial factor
when collecting data for it informs the data users of when particular events occurred. In
this subsection, the study looked at some uses cases of time series analysis. In forecasting
time series data, the objective is to predict how the data observation will continue or vary
into the future based on past and current events (Hewage et al., 2020).

One of the most common use cases of time series analysis is in the prediction of weather
patterns (Karevan and Suykens, 2020). The study of changes in the weather is neces-
sary to get numerous advantages such as daily decision making on what clothes to wear,
saving lives of people who live close to the coast, or mitigating risk when a hurricane
has been detected, for example. Farmers need such information in order to know if it is
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appropriate for them to start planting or wait (Hewage et al., 2020). All this is made
possible when meteorologists accumulate weather-related data to compute the state of
atmospheric conditions. This data is then analysed using data-driven forecasting models
for an application of weather forecasting.

Time series analysis also helps organisations when it comes to decision making based on
sales trends. For instance, based on certain fluctuations in trends or essential patterns over
time, by using various data visualization techniques, organizations could study seasonal
trends and research more to understand the causes of these trends (Bai and Ng, 2008;
Kumar et al., 2020). This way, the organisations would know when to conduct certain
sales and when not to do so. Clothing companies benefit greatly from such trend patterns’
analysis. In so do doing, they cut on unnecessary productions by producing clothes that
will not be bought.

Thus, time series analysis helps businesses make informed business decisions, as organi-
sations analyse past data patterns in order to forecast future possibilities and assess how
effective proposed changes have performed (Kumar et al., 2020). With real-time data
at hand, the organisation’s proposed changes can be assessed in real-time to see if they
are bringing intended results. Such data can also be used to assess the growth of an
organisation over time. In the health sector, epidemiologists have used time series data to
understand the spread and behaviour patterns of diseases (Held et al., 2017). Covid-19 is
a very good example of how epidemiologists were able to predict peak points and when
the next wave of attack would come (Friedman et al., 2021). Using such data, health
experts were able to know the spread pattern and the efficiency of the treatments being
offered to patients.

Times series analysis has also been used to analyse real-time traffic targeting websites
(Shelatkar et al., 2020), but also being able to understand unusual traffic patterns, which,
more often than not, are indicative of threat activity within a network. It has also been
used to help understand customer and employees behaviour as the amount traffic routed
towards websites show which services are accesses at specific times (Casado-Vara et al.,
2021). Casado-Vara et al. (2021) also stated that time series analysis of network traffic has
helped companies offer their client good response time to their requests to online services
as customers experiencing lengthy waiting times abandon delayed services. Online video
gaming is a good example of online services that companies are offering. Companies need
to know when most of their client play online so that they can manage their resources
and offer ideal gaming experience to their customers. Long Short Term Memory (LSTM)
Recurrent Neural Network and Autoregressive integrated moving average have been used
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to achieve this purpose (Shelatkar et al., 2020; Casado-Vara et al., 2021).

Casado-Vara et al. (2021) developed an architecture for web traffic forecasting based on
artificial intelligence with LSTM for time series forecasting. This architecture offered real
time data on how organisation can help improve customer’s user experience online. By
detecting unusual patterns in network traffic check point were able to identify the re-
emergence of SQL Slammer worm. This was reported in work done by (Chindipha and
Irwin, 2017) where they used IBR data to confirm the observations made by Check point
software. Essentially, in both studies, a time series analysis showed unusual high volume
of traffic that was not recorded before November 2016. Thus using such an unusual trend,
these researchers were able to analyse the network traffic and identify the cause of this
anomaly.

Cortez et al. (2006) developed three time series neural network methods that had the
capability of forecasting the amount of traffic in TCP/IP based networks by using. The
objective was to create tools that would improve anomaly detection in traffic. Cortez
et al. (2012) repeated the experiment using an adapted novel neural network ensemble
approach and time series methods (ARIMA and Holt-Winters). They also used real-world
data collected from two large Internet source providers (ISPs) which were used a training
datasets. They made predictions every 5 min, hourly and daily with minor errors. This
improved and validated their results when compared to their earlier experiment.

These are just some of the practical applications of time series data once it has been
analysed and meaning is drawn from it. Times series analyses are significant in the
economic sectors, astrology, health sectors and our daily livelihood, thus their significance
cannot be overemphasised.

2.7 Chapter Summary

This chapter introduced the reader to network telescope which monitors a portion of
routed IP address blocks on which little or no legitimate traffic exists. Thus monitoring
unexpected traffic arriving at a network telescope using network sensors brings about IBR
data. This was explained in Section 2.1. Section 2.2 expanded on this by explaining
what Internet background radiation (IBR) data is. This was the main source of data
used in this research. Section 2.3 discussed more on the feasibility of having a small-
sized network telescope and what one can achieve with it. This was immediately followed
by Section 2.4 which discussed some of the scenarios that show how IBR and network
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telescopes were used to gather threat intelligence data. This led to Section 2.5 which
explained why IPv4 addresses are running out so rapidly and shed more light on the
implications of this exhaustion on Internet users. Considering that the research is dealing
with data that has timestamps in it, the study introduced concepts related to time series
analysis in Section 2.6. This is the knowledge that is needed in order to understand why
the statistical techniques discussed in Chapter 3 were chosen.



3
Review of Statistical Techniques

This chapter introduces the reader to the statistical techniques that were used in this
research study. The nature of the data demanded certain statistical techniques in order
to achieve the objectives introduced in Chapter 1. The tools introduced in this chapter
are used in Chapters 5 and 6.

The chapter begins by giving a brief introduction of data sampling in Section Section
3.1. This is immediately followed by Section 3.2 which introduces Bootstrapping. It is
in this section that background information regarding how bootstrapping has been used
by other researchers is introduced. This chapter also looked at strengths and limitations
of Bootstrapping techniques in Section 3.3. This leads to Section 3.4 which explains
and introduces a reader to Confidence Interval (CI) and links it to bootstrapping. This
section also addresses the limitations that come with computing CI using bootstrapping
in. In Section 3.5, the study explains how other researchers used bootstrapping, thus
application of bootstrapping and confidence interval are in this section. This section
then leads into Section 3.6 which introduces regression analysis to the reader before
expanding into Section 3.7 to talk about types of regression analysis that were considered

33
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for this study. From here, the study focused on what features constitute a mathematical
model. The concepts and steps needed to formulate mathematical models are explained
in Section 3.8

Time series similarity scoring techniques are introduced in Section 3.9. It is in this sec-
tion that the study explained how Mean Absolute Percentage Error (MAPE), Symmetric
Mean Absolute Percentage Error (SMAPE), Mean Absolute Error (MAE) and Mean Ab-
solute Scaled Error (MASE) are used in this study. Section 3.10 concludes the chapter
by explaining the information retrieval techniques that were considered for this research
and how they were used in this study. The techniques explained in this chapter are used
in Chapters 5 and 6.

3.1 Data Sampling

Candès and Wakin (2008) defined data sampling as a process where a portion of the
larger dataset (baseline dataset) is analysed and exposed to manipulation to identify how
representable the sample is to the baseline dataset. Data sampling is a long-standing
technique when it comes to statistical analysis, and without such techniques to gauge
the samples, it is difficult to evaluate how representative the samples are to the original
dataset (Aizawa, 2003).

Figure 3.1: Examples of sampling methods (McCombes, 2019)
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Data sampling can be done using multiple methods, but this study focused on sequential
and random sampling as explained by Parthasarathy (2005). Figure 3.1 shows some of
the methods that are used when sampling data. For each of the methods of data sampling,
a portion of the large dataset is selected using a specific criteria. In Figure 3.1, each of
the circled individual or group have been selected based on various criterion as described
in the figure. The findings from these selected individuals are then applied to the overall
population.

Data sampling helps us in addressing the central question this study aims to address:
how accurately does the identified sample (referred to as subnet equivalent) reflect the
baseline dataset? However, to answer this question, various techniques have been put in
place to assess the viability of such samples combined with their sampling techniques.
The two main criteria used were sequential and random sampling. Sampling is done in
this research study in order to quantify the differences that exist between the baseline
dataset and the samples drawn from it. More statistical methods as discussed in Sections
3.6, 3.8, 3.9 and 3.10 were applied to analyse the differences in datasets created from
sequential and random sampling techniques.

3.2 Bootstrapping

Bootstrapping works on the principle of starting with a dataset with an unknown under-
lying distribution from which a sample, which is a partially randomised version of the
available data, is selected (Kirby and Gerlanc, 2013; Efron and Hastie, 2016; Marcacci-
oli and Livan, 2020). Using any specific population parameter of interest (it could be
mean, standard deviation, variance etc), a normal distribution is formulated by applying
the statistical function to the parameter of interest (Martin, 1990; Davison and Kuonen,
2002; Kirby and Gerlanc, 2013; Chamandy et al., 2015).

The re-sampled data, which approximates the normal distribution, is formulated through
simulation of the original data using the statistical function of interest as the guiding
population parameter of interest (Zoubir and Iskandler, 2007; Kirby and Gerlanc, 2013;
Chamandy et al., 2015). Essentially, bootstrap eliminates the unknown variables (e.g.
unknown data distribution, stationarity) that are presented in the original data by simu-
lating the data to come up with known variables from which values like confidence interval
(CI) can be computed using the plug-in-principle (Zoubir and Iskandler, 2007; Kreiss and
Lahiri, 2012; Chamandy et al., 2015; Hesterberg, 2015). This study used the mean value
as the statistical parameter of interest to bootstrap IBR data.
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Kreiss and Lahiri (2012); Hesterberg (2015) reported that the plug-in principle works
on the notion of computing an estimate of the unknown variable and replacing that
which is unknown in order to understand a population under study. Thus, the unknown
parameter(s) is substituted for the ones computed as an estimate of what was not known
initially. In this study, the mean (average number of unique SRCIP observed per DSTIP)
was used as the parameter of interest. The mean is first calculated from the baseline
dataset and the value computed becomes the value of interest.

Through the simulation process, using our population parameter estimator (mean), this
study reused the original data through re-sampling to create a new data sample which is
referred to as a bootstrap sample by Efron (1992); Zoubir and Iskandler (2007), among
other authors. With known variables being present in the bootstrap sample, one can
proceed and compute the confidence interval (Kirby and Gerlanc, 2013), an estimate of
the shape of the sampling distribution, an estimate of the standard error of the quantity
(standard error of the mean (SEM) was computed for this study) (Hesterberg, 2015) and
an estimate of bias and P-value (Rousselet et al., 2019). This research is more interested
in the CI side of bootstrapping and it is this aspect that this report will focus on. This
is in line with the study’s goal of offering a certain degree of assurance and reliability of
the data to whoever is going to use the data.

One can choose to ensure that the bootstrap samples have the same size as the original
data or make the samples larger than the original dataset by sampling from the original
data with replacement on intention of estimating the impact of large samples on the
standard errors of the data (Kirby and Gerlanc, 2013; Chamandy et al., 2015; Efron and
Hastie, 2016). When creating a bootstrap sample, each bootstrap sample consists of a
simple random sample selected with replacement from the total number of observations
from the original data.

When creating a bootstrap sample with the same size as the original dataset, the aim is
to ensure that the standard errors observed in the original dataset are reflected in our
bootstrap sample as compared to having hypothetically larger or smaller samples (Dixon,
2006; Hesterberg, 2015). This essentially means that the number of observations can be
the same but the composition will not be the same. This is particularly important to
our research study because the different samples being compared do not have the same
number unique SRCIPs, however, for comparability purposes, they are designed to contain
the same number of data points when bootstrapping. Dixon (2006); Hesterberg (2015)
observed that better accuracy in the outcome of the estimated output of the bootstrap
samples is ensured when samples that are larger than 10,000 are used.
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Figure 3.2: The Independent data bootstrapping re-sampling principle

Figure 3.2 shows the graphical representation of the principle behind bootstrap re-
sampling with replacement with the aim of ensuring that the bootstrap sample has the
same number of observations as the original data, irrespective of having a different com-
position of the observations. As it can be seen in Figure 3.2, the original data (a)
represents the baseline datasets, while bootstrap samples (b), (c) and (d) represent differ-
ent variations of bootstrapping.

The reader will note that samples shown in Figure 3.2 b - d have some original obser-
vations sampled more than once while others are not sampled at all. For each bootstrap
sample, an estimate is computed (sample mean was used in this study for non-parametric
bootstrapping as our population parameter), thus if one draws out and simulates 10,000
bootstrap samples and computes the mean for each of them as the population parame-
ter of interest, one would end up with an approximately normal distribution of 10,000
bootstrap estimates of the sample mean, which now becomes the new dataset from which
computations are based. More details on non-parametric bootstrapping are explained in
Section 3.2.2.

Depending on the random observations selected from the baseline data, the value of the
mean may vary as it is computed from the selected observations. Large bootstrap samples
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tend to have very small variations in their mean (or any statistical parameters of interest)
as the sample pool is large enough to offer a variety of observations (Hesterberg, 2015;
Efron and Hastie, 2016; Rousselet et al., 2019). It is good practice to ensure that the
bootstrap samples (also known as re-samples) contain the same number of data points
or observations as the original dataset in order to minimise biases and variability of
the population parameters (Dixon, 2006; Kirby and Gerlanc, 2013; Efron and Hastie,
2016). If the bootstrap sample, as well as the baseline dataset, are large enough, the
distribution of bootstrap sample estimates provides a good approximation of the sampling
distribution of the baseline dataset, thereby making inference practical (Kreiss and Lahiri,
2012; Hesterberg, 2015; Rousselet et al., 2019).

It is also important to note that all values that constitute the bootstrap sample are
independent and identically distributed (IID) since each observation within the pool of
baseline dataset has an equal probability of being a member of the bootstrap sample
(Efron, 1992; Kreiss and Lahiri, 2012; Efron and Hastie, 2016). Efron and Hastie (2016)
showed that an empirical probability distribution of the bootstrap sample maximises the
probability of obtaining the observed samples under all possible choices hence i.i.d. (Efron,
1992; Dixon, 2006; Kreiss and Lahiri, 2012; Chamandy et al., 2015).

Having explained the core of bootstrapping, subsections 3.2.1 and 3.2.2 will explain
the two main categories of bootstrapping. In this study, bootstrapping was categorised
into two parts: parametric and non-parametric bootstrapping.

3.2.1 Parametric Bootstrapping

Parametric bootstrapping involves the need to make parametric assumptions based on
an underlying equation or any specific model (Martin, 1990; Zoubir and Iskandler, 2007;
Rousselet et al., 2019; Marcaccioli and Livan, 2020). In parametric bootstrapping, the
assumptions are made on the underlying model or equation and the parameters of that
model (Martin, 1990; Kreiss and Lahiri, 2012; Hesterberg, 2015). Our bootstrap samples
are then drawn from the assumed model together with the estimated parameters. It is
worth noting that the estimated parameters are in no way a replacement of the baseline
estimates. This is the case because Kreiss and Lahiri (2012); Hesterberg (2015) found
that the estimated mean cannot replace the baseline mean, but rather make inferences
from such a computation to understand the unknown values of the baseline dataset.

Dixon (2006) observed that with parametric bootstrap, one either knows or assumes the
function (or model) responsible for the distribution of their bootstrap sample coupled
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with unknown parameters that are revealed once the sample is computed. In some cases,
one does not need to use the model but explicitly state the distribution observed in the
original data and use it as a baseline. Either way, the bootstrap sample is generated on
explicitly stated assumptions and with replacement (Dixon, 2006). More often than not,
the unknown parameters estimated offer maximum likelihood estimates to cover as much
ground as possible (Dixon, 2006). Results for parametric bootstrapping are reported in
Sections 5.5.1 and 5.5.3. The research approach used to process the data for parametric
bootstrapping is explained in Section 5.2

3.2.2 Non-Parametric Bootstrapping

Independent research studies conducted by Kreiss and Lahiri (2012); Hesterberg (2015);
Marcaccioli and Livan (2020) reported that non-parametric bootstrap draws its samples
from an empirical distribution sample generated from an estimate of the standard error
of the quantity. Non-parametric bootstrapping involves none of the assumptions made in
parametric bootstrapping, but rather is based on an estimate of the standard error of the
quantity. Dixon (2006) explained that non-parametric bootstrapping usually constitutes
large sample sizes and numerous simulations to get the appropriate bootstrap sample
correctly.

Martin (1990); Simar and Wilson (1998) found that it is also possible to make adjust-
ments to a non-parametric bootstrap by ensuring that samples are done with replacement
(often referred to as bootstrap with replacement). This was the approach that was taken
in this study while it maintained the use of non-parametric bootstrapping because no
assumptions were made regarding its distribution or parameters. As such, it still qualifies
to be called non-parametric bootstrap, something that Simar and Wilson (1998) partly
alluded to in his work. This approach improves the accuracy of the results and some of
the criticism offered in its lack of having statistical basis when formulating its bootstrap
sample (Simar and Wilson, 1998).

For this study, the mean of the individual datasets was chosen as the estimate of the stan-
dard error of the quantity. It is the result from this statistical function of the mean (upon
simulation) from which parameters of interest, like the maximum likelihood CI and stan-
dard errors, are computed from (Dixon, 2006; Zoubir and Iskandler, 2007; Wilcox, 2011;
Hesterberg, 2015). A detailed research approach for computing CI for non-parametric
bootstrapping is presented in Section 5.2
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It is worth noting that median, standard deviation, variance or any quantile can be used
as an estimate of the standard error of the quantity when creating a non-parametric
bootstrap sample (Dixon, 2006; Kreiss and Lahiri, 2012; Rousselet et al., 2019). The
main assumption when it comes to non-parametric bootstrapping is that the distribution
of the bootstrap sample more often than not take the shape of the data from which
it was taken (Kreiss and Lahiri, 2012; Rousselet et al., 2019). The re-sampling with
replacement involved in computing their confidence interval makes both parametric and
non-parametric bootstrap fall under the main category of percentile bootstrap (Dixon,
2006; Wilcox, 2011; Rousselet et al., 2019). In this study, a linear regression model
was used as the underlying model from which computations of the percentile confidence
interval were calculated. The same applies to its graphical representation (bootstrap
distribution) which are based on the assumption that the data follow the linear regression
model.

3.3 Strengths and Limitations of Bootstrapping Tech-

niques

Chan (2003); Higgins (2004) observed that with parametric bootstrap, it is the same
as calculating things in a normal distribution assumption. Chan (2003); Bagdonavicius
et al. (2013) reported that using the assumption of a certain distribution brings an ex-
tra accuracy in the parametric bootstrap over the non-parametric bootstrapping if the
assumptions made are correct. What this means is that if the assumptions made about
the data distribution and model used are wrong, it will in turn affect the accuracy com-
puted from such a dataset. This inverse observation was also reported by Efron and
Tibshirani (1991); Chan (2003); Higgins (2004)in their separate studies. The application
of parametric tests requires various assumptions to be satisfied first. For example, the
first assumption is that data follows a normal distribution and the population variance is
homogeneous. However, some data samples may show skewed distributions, and in such
cases, parametric bootstrapping will give poor results as it is affected by the extreme
values (Chan, 2003; Higgins, 2004; Bagdonavicius et al., 2013).

Another limitation of parametric bootstrapping is the size of the population. If a sample
size is reasonably large, the applicable parametric sampling can be used (Chan, 2003;
Higgins, 2004). However, if the sample size is too small, one may not be able to validate
the distribution of the data (Chan, 2003; Higgins, 2004). Thus, the application of non-
parametric bootstrapping becomes the only suitable option.
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The benefits of the non-parametric bootstrap lie in the fact that one does not need to as-
sume any distribution or assume any specific models (Bronars, 1987; Chan, 2003; Higgins,
2004). As such, there are fewer assumptions made when using non-parametric bootstrap-
ping and the assumption of data being normally distributed do not apply. Thus, in cases
where the underlying data does not meet the assumptions about the population sample,
non-parametric bootstrapping becomes very useful in giving accurate results (Chan, 2003;
Higgins, 2004).

Unlike parametric tests that can only work with continuous data, non-parametric boot-
strapping can be used for all data types (Chan, 2003; Higgins, 2004). These data types
include: data with nominal variables, interval variables, or data that has outliers or that
have been measured imprecisely (Chan, 2003; Higgins, 2004; Bagdonavicius et al., 2013).
For such types of variables, non-parametric bootstrapping are the only appropriate solu-
tion. Furthermore, small sample sizes are acceptable with non-parametric bootstrapping
(Chan, 2003; Bagdonavicius et al., 2013). However, in cases where assumptions haven’t
been violated, non-parametric bootstrapping is less powerful than parametric bootstrap-
ping.

All the parameters used are computed first from the baseline dataset (Chan, 2003; Higgins,
2004). In both parametric and non-parametric bootstrapping cases, nothing new was
learnt that was not in the original data as all computations are based on the baseline
dataset (Bronars, 1987; Bagdonavicius et al., 2013). In addition to this, both parametric
and non-parametric techniques inherit errors that came with the original data i.e. they do
not eliminate errors found in the baseline data (Efron, 1983; Higgins, 2004; Bagdonavicius
et al., 2013)

3.4 Confidence Interval

Dixon (2006) defined confidence interval coverage as the probability that the confidence
interval includes the true parameter under repeated sampling from the same underlying
population. The true parameter is the actual computed value that one would expect to
find in the dataset being analysed. For instance, the study presented in this report is
using the mean as is population parameter. Thus the true parameter is the computed
mean value of the dataset. Mean was chosen because of its overall representativeness on
the data. This has been presented in great detail in Section 5.2.
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Figure 3.3: 95% Confidence Interval of a Normal Distribution (Fneish, 2021)

Having sampled from the baseline dataset multiple times, it is expected that the mean
value will fall in the computed range. Assume the interval given is between 450 and
469 unique source IP (SRCIP) addresses per destination IP (DSTIP) computed at 95%
CI. If the researchers take 100 random samples from the baseline population, then they
should expect the mean to fall between 450 and 469 unique SRCIP addresses per DSTIP
in 95 of those samples. If the researchers want even greater confidence, they can expand
the interval to 99% confidence. Doing so invariably creates a broader range, as it makes
room for a greater number of sample means. From here onward, Confidence Interval
will be referred to as CI. If they establish the 99% confidence interval as being between
450 and 469 unique SRCIP addresses per DSTIP, in the case of the data under study
(see Chapter 4), they can expect 99 of 100 samples evaluated to contain a mean value
between these numbers. The true average number of unique SRCIP addresses per DSTIP
for each sampled population is likely covered by a range of values called a confidence
interval (Dixon, 2006). Each sample will definitely have its own mean, which acts as the
true parameter.

Working with this definition, it essentially means that our value of interest after multiple
re-sampling from the baseline data, our parameter of interest (average number of unique
SRCIP addresses per DSTIP) ought to fall within the range generated by the bootstrap
sample created. The range computed from the bootstrap sample is what gives the user
the level of confidence needed in the data in order to make informed decisions. When
computing the confidence intervals, this study used the quantile ranges in order to compute
a specific CI (Rousselet et al., 2021; Marcaccioli and Livan, 2020).

The rule of thumb is that for each CI (the overall confidence level selected) the value is
split into two to accommodate both the lower limit and the upper limit to imitate two
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standard deviations from the mean principle (Dixon, 2006). For instance, in a 95 % CI,
the lower bound is defined as the 2.5th quantile of the bootstrap distribution, and the
upper bound at the 97.5th quantile. Figure 3.3 shows a graphical representation of how
a 95 % CI would look like. The lower limit is placed at 2.5% which is the 2.5th quantile
while the upper limit is placed at 97.5th quantile. Adding all proportions gives the reader
a 100% dataset.

On the other hand, if the computation is being made at 95% CI, it means the study is
only interested in the values under the curve and between the lower limit and the upper
limit. That interval will give a set of all possible values needed for that CI. If 99 %
CI is computed, the lower bound will be defined as the 0.5th quantile of the bootstrap
distribution, and the upper bound at the 99.5th quantile (Dixon, 2006; Rousselet et al.,
2017).

Hesterberg (2015) presented work that showed that bootstrap samples that are generated
from smaller baseline datasets tend to have a wider range for their CIs because the spreads
and shapes of the samples vary substantially. Empirical and theoretical studies of coverage
conducted by Tibshirani and Efron (1993); Davison and Hinkley (1997) showed that
the percentile CI may not always give accurate results i.e. it works very well in some
cases while in other cases, the likelihood of one getting accurate results is very slim.
Dixon (2006); Rousselet et al. (2019) observed that the accuracy of CI is dependent
on how the CI endpoints are calculated, the size of the bootstrap sample, the type of
bootstrapping used (whether it is parametric or non-parametric), the statistical functions
used as a parameter estimator, and how the bootstrap samples are selected. Davison
and Hinkley (1997); Dixon (2006) conducted separate studies that showed that skewed
sampling distribution tends to be less accurate as compared to symmetrical sampling
distribution when calculating endpoints of CI.

The size of the sample as well as the method used to compute the endpoints of CI affect
the accuracy of the coverage. Using two different forms of bootstrapping helps to evaluate
the extent to which these errors affect the data under study. For instance, non-parametric
bootstrapping is not affected by the size of the data while parametric bootstrapping can
be affected with very small sizes. Martin (1990); Dixon (2006) observed that increasing
the number of simulations when generating bootstrap samples boosts the confidence in the
confidence interval computed from the sample. Application and findings of bootstrapping
that use confidence interval are presented in Section 3.5.
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3.4.1 Limitations of Bootstrapping that use CI

Despite its many advantages, including computational transparency, bootstrapping that
uses CIs has setbacks emanating from sources of inaccuracy (DiCiccio and Efron, 1996;
Kirby and Gerlanc, 2013). First, the work done by Kirby and Gerlanc (2013) showed
that many sample statistics used are biased estimators of their corresponding population
parameters, such that the expected value of the population parameter of interest does not
equal the actual value of the baseline dataset. In addition to this, the standard error of an
estimate of the population parameter of interest may not be independent of the value of
the original parameter of the baseline dataset (Kirby and Gerlanc, 2013). Consequently,
even for unbiased estimates, the lower and upper percentile cutoffs may not be the same
number of standard error units from the estimates’ population parameter (Kirby and
Gerlanc, 2013).

When empirical probability distribution of the bootstrap samples approaches the distribu-
tion of the baseline dataset as the number of observations in the bootstrap sample grows
large, only then does the standard error of the bootstrap approach the true standard error
of the baseline’s parameter of interest (Kreiss and Lahiri, 2012; Efron and Hastie, 2016).
Another setback of bootstrapping is that it is less accurate when working with smaller
samples, especially when computing percentile bootstrap confidence interval (Bronars,
1987; Kreiss and Lahiri, 2012; Hesterberg, 2015). On the other hand, it works very well
with large samples. When working with smaller samples, one is better placed to work
with t-tests as compared to any of the bootstrap techniques as this is an inherent setback
in all bootstrap techniques (Chan, 2003; Hesterberg, 2015).

3.5 Applications of Bootstrapping and Confidence In-

tervals

In this section, the study will show some of the real-world use cases of bootstrapping
and confidence interval. As explained in Section 3.2, bootstrapping is a simulation tool
that uses random sampling with replacement to estimate a sampling distribution for a
given statistic, and that the goal of this sampling is to accurately represent a population
of inference. In other words, bootstrapping is a computationally intensive statistical
technique that allows the researcher to make inferences from data without making strong
distributional assumptions about the data or the statistic being calculated (Haukoos and
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Lewis, 2005; Wood, 2005). This allows the researcher to estimate CI for statistics that
do not have simple sampling distributions. CI can be paraphrased as a range of plausible
values from which the true population parameter under study can be observed. The
effectiveness of a CI is judged by whether or not it contains the true value of the population
parameter (Haukoos and Lewis, 2005; Wood, 2005).

The use of CI has formed an integral part of the research, be it in evaluating the per-
formance of models and giving confidence to users in the data, or in understanding the
behaviour of variables unknown to the researchers Haukoos and Lewis (2005). When
models are developed, irrespective of the fact that they give accurate results, research
demands that there has to be another metric needed to validate the outcome of the re-
sults. CI has emerged as one of the statistical techniques that researchers use to give
confidence in the performance of the models they are either using or that they developed
(Wood, 2005). CI has also been used to test the efficacy of drugs when an organisation
is conducting clinical trials (Bender, 2001). Before the drug is released, the organisations
manufacturing the drug want to give reassurance to their clients in how effective the new
drug is in combating the problem at hand. Thus a series of tests are conducted at different
levels of CI to support the argument of how effective the new treatment is.

Bootstrapping has been used to study the effect of sampling variation by quantifying
the variation of the sample estimates using their standard deviation (Ismay and Kim,
2019). In addition to this, Ismay and Kim (2019) did two case studies using bootstrap-
ping and CI to uncover unknown variables in a population using sample data that was
bootstrapped. In one of the real-life case studies, Ismay and Kim (2019) showed how they
used bootstrapping to understand polls that were conducted by the Kennedy School’s
Institute of Politics at Harvard University1. In the study, 41% of millennials (adults ages
18-29) approved of Obama’s job performance. However, the online survey only had 2,089
participants and had no idea of the population size of the millennials who shared the same
views.

Using bootstrapping, Ismay and Kim (2019) showed how the organisers could have made
sense of the data that could have been representable of the total population of millennials.
In a different study, Ismay and Kim (2019) tested the myth of how contagious yawning can
be by computing confidence interval using bootstrapping. The ability that bootstrapping
has in making sense of sample data through its rigorous simulation process has proved
beneficial in cutting down costs when conducting censuses as the random sample datasets

1https://www.npr.org/sections/itsallpolitics/2013/12/04/248793753/poll-support-for-obama-among-
young-americans-eroding



3.6. REGRESSION ANALYSIS 46

used can be considered as unbiased and representative of the population. Thus any results
based on the sample could be generalized to the population (Efron and Hastie, 2016; Ismay
and Kim, 2019).

Psychologists have benefited from bootstrapping by applying bootstrap estimation to data
from clinical samples and measures relevant to experimental psychopathology (Wright
et al., 2011; Field and Wilcox, 2017). In so doing, psychologists have been able to under-
stand patients’ responses to treatments and make inferences from such data. Psychologists
often tried to fit their hypotheses to a small but well-known set of statistics with math-
ematical formulae for calculating the standard error, however, bootstrapping has allowed
psychologists to avoid this restrictive approach (Wright et al., 2011; Field and Wilcox,
2017). Bootstrapping had also been used to understand the behaviour of employees in an
organisation by bypassing the need to interview every employee to address a problem at
hand (Howell, 2012). With, bootstrapping, a sample is interviewed and inferences made
from it. Each time, this approach has proved to deliver the intended results.

3.6 Regression Analysis

Rawlings et al. (2001); Chatterjee and Hadi (2015) presented regression analysis as a set
of statistical methods used for the estimation of relationships between the main variable
that an individual is trying to understand or predict (referred to as a dependent variable)
and one or more variables that are suspected to have an impact on the dependent vari-
able of interest (referred to as independent variables). Regression analysis can be used
to assess the strength of the relationship between variables but also for modelling the
future relationship between the variables of interest (Rawlings et al., 2001; Chatterjee
and Hadi, 2015). An individual goes through the path of regression analysis with the
aim of quantifying how each of the variables affect each other. If there is variability, then
the individual mathematically sorts out which of those variables has more impact than
the other (Rawlings et al., 2001). Section 5.4 shows how regression analysis has been
applied in this study to address the research questions.

Among the questions addressed by regression analysis include, but are not limited to, the
following: Which variables in the data under study matter most? Which ones can be
ignored? How are the variables of interest interacting with each other? How certain or
confident are we about all of the identified variables of interest? These questions were
reported by Chatterjee and Hadi (2015) in their work.
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In order to answer these questions, one is required to draw a scatter plot that shows the
relationship that exists on the variables of interest in the dataset of interest. A line of best
fit is then drawn on the plot to offer the degree of certainty on the relationship among
the variables of interest. The line of best fit best describes the relationship that exists
between the dependent variable and the independent variable(s) found in one’s dataset
(Rawlings et al., 2001; Chatterjee and Hadi, 2015). It is worth noting that the line of
best fit is the best estimate of the available dataset and may not always be the same
if some margin of error occurs within the dataset, bringing about variability (Rawlings
et al., 2001; Chatterjee and Hadi, 2015). Rawlings et al. (2001) proved that a small
margin of error offers more confidence in the line of best fit drawn from a dataset, and
that the relationship that exists among the variables and a large margin of error gives
less confidence in the data and the line that describes the relationship of the variables of
interest.

The applications of regression analysis are limitless, especially in the research field. For
instance, regression analysis can be used as a tool for predictive analytics and forecasting
in market research (Laitinen, 2018; Fisher and Kordupleski, 2019). Considering that it
is used to understand the relationship between two or more variables, regression analysis
can be used to understand how a company’s revenue can be impacted by the ups and
downs of oil prices, the consumer price index (CPI), and gross domestic product (GDP)
(Al-Tamimi et al., 2011; Barakat et al., 2016). A clear understanding of how sales of an
organisation are affected by consumer preferences can help businesses and organizations
prioritise efforts to improve measures like overall satisfaction, likelihood to recommend,
or net promoter score (NPS) is presented by Laitinen (2018); Fisher and Kordupleski
(2019). Using regression analysis in quantitative research provides the opportunity to
take corrective actions on the items that will most positively improve overall satisfaction.

3.7 Types of Regression Analysis

Regression analysis includes several approaches. These include techniques such as linear,
multiple linear, and nonlinear as explained by Rawlings et al. (2001); Chatterjee and Hadi
(2015). The most common models are simple linear and multiple linear. Nonlinear regres-
sion analysis is commonly used for more complicated data sets in which the dependent
and independent variables show a nonlinear relationship (Rawlings et al., 2001). This
research focused on linear and non-linear regression only, and that is what this subsection
will focus on. During the experimental stage, a test was done to see how the data would
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perform using multiple regression analysis, but the results were very poor, resulting in
them being left out of this study. In order to use linear regression analysis, for your data,
the data in question must meet the baseline assumptions needed to qualify for use. This
is critical as it validates the quality of your results.The baseline assumptions form the
benchmark from which results can be compared against.

3.7.1 Linear Regression Analysis

Linear regression analysis is used when one wants to predict the value of a dependent
variable based on the value of the independent variable (Twomey and Kroll, 2008; Mont-
gomery et al., 2012; Hoffmann and Shafer, 2015). Unlike multiple regression, which has
two or more independent variables, linear regression has one independent variable to work
with (Montgomery et al., 2012; Hoffmann and Shafer, 2015). When using linear regres-
sion, there are a number of factors that need to be put into consideration. Firstly, there is
a need to ensure that there is a linear relationship between the two variables under study,
which is usually done using a scatter plot (Twomey and Kroll, 2008; Montgomery et al.,
2012; Hoffmann and Shafer, 2015).

If the relationship displayed in one’s scatter plot shows linearity, one will have to resort
to another form of regression analysis; either non-linear or polynomial regression (Sinan
and Alkan, 2015). This was the approach used in this study. Twomey and Kroll (2008);
Montgomery et al. (2012) placed more emphasis on making sure that the independent
and dependent variables are measured at the continuous level i.e. they are either interval
(their central characteristic is that they can be measured along a continuum and they have
a numerical value) or ratio variables (interval variables, but with the added condition that
0 (zero) of the measurement indicates that there is none of that variable) (Montgomery
et al., 2012).

Thirdly, there should be no significant outliers on the scatter plot (Twomey and Kroll,
2008; Hoffmann and Shafer, 2015). An outlier with regard to scatter plot will be any
point on a scatter plot that is (vertically) far away from the regression line, indicating
that it has a large residual (error) (Sinan and Alkan, 2015). The plots are plotted at 95%
CI of the data to identify the outliers (within 2 standard deviations of the mean). Any
data point out of this range is identified as an outlier. One major drawback that outliers
pose regarding regression analysis is their overall negative effect on the regression analysis,
thereby their fitness on the regression equation is questionable (Twomey and Kroll, 2008;
Hoffmann and Shafer, 2015; Sinan and Alkan, 2015). If the equation is negatively affected,
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then the values computed from it will be inaccurate (Sinan and Alkan, 2015). The outliers
presented may often be as a result statistical anomalies or produced by errors in the
measurements that would not affect the curves, hence are usually ignored.

Another point of consideration when using linear regression is to check for the indepen-
dence of observations within the variables of interest (Montgomery et al., 2012; Hoffmann
and Shafer, 2015). Usually, Durbin-Watson (DW) statistic as presented by (Akter, 2014),
is used to test for auto-correlation in a dataset i.e. independence of observations. The
DW statistic always has a value of between zero and 4. A value of 2 means there is no
auto-correlation detected in the sample (Akter, 2014). Values from zero to 2 indicate
positive auto-correlation, and values from 2 to 4 indicate negative auto-correlation (Ak-
ter, 2014). Lastly, the reader needs to check that the residuals (errors) of the regression
line are approximately normally distributed (Hoffmann and Shafer, 2015). Two common
methods to check this assumption include using either a histogram (with a superimposed
normal curve) or a Normal P-P Plot (Hoffmann and Shafer, 2015; Das and Imon, 2016).
This study has parametric and non-parametric bootstrap sample plots to check this at
different confidence intervals.

3.7.2 Non-Linear Regression Analysis

Smyth (2006); Archontoulis and Miguez (2015) explained that a non-linear regression
analysis is used when a series of events do not clearly or directly follow from another i.e
there is no direct relationship between the dependent and independent variable. Nonlin-
ear regression is a method of finding a nonlinear model of the relationship between the
dependent variable and a set of independent variables (Smyth, 2006; Archontoulis and
Miguez, 2015) i.e. relates the depended and independent variables in a nonlinear (curved)
relationship. Unlike traditional linear regression, which is restricted to estimating linear
models, nonlinear regression can estimate models with unpredictable relationships be-
tween independent and dependent variables (Archontoulis and Miguez, 2015). This is
accomplished using iterative estimation algorithms (Kass, 1990; Baty et al., 2015).

Chen et al. (2020) presented work that showed that non-linear regression is often more
accurate as it learns the variations and dependencies of the data. Worthy of note is the
realisation that any relationship that is not linear, can be termed as non-linear and is
usually represented by the polynomial of k degrees (maximum power of X) (Ostertagová,
2012; Archontoulis and Miguez, 2015). Many different nonlinear regression models exist
that may be used to fit whatever the data set looks like and these can go on to infinite
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degrees (Ostertagová, 2012). For this study, sixth degree was used in order to find the
results that best fit and described the data. sixth degree was used because at this level,
that is when the highest levels of accuracy were observed (the best fit was found at this
sixth degree, giving a better representation of the data.). This is shown in Section 5.4.
If one uses a wrong k degree for the polynomial at hand, the accuracy of the model is
negatively affected.

The overall objective of a nonlinear model is to make the sum of the squares as small as
possible (Kass, 1990; Motulsky and Brown, 2006; Sanft and Walter, 2020) i.e. the smaller
the sum of these squared figures, the better the function fits the data points in the set. The
sum of squares is a measure that tracks how far the dependent observations vary from the
nonlinear (curved) function that is used to predict dependent variables (Motulsky and
Brown, 2006; Sanft and Walter, 2020). These distances are called residuals (Motulsky
and Brown, 2006). The sum of squares is significant in regression analysis as it is used
to determine the fitness of a regression model, which is computed by calculating the
difference between the mean and every point of data (Sanft and Walter, 2020). Nonlinear
regression analysis mainly concerns the prediction of responses, statistical inferences of
parameters, estimates, and the goodness of fit of the nonlinear model (Kass, 1990).

One advantage that nonlinear regression models have over linear regression is their ability
to accommodate different mean functions (Ritz and Streibig, 2008). In order to obtain
accurate results from the nonlinear regression model, one ought to make sure the function
specified describes the relationship between the independent and dependent variables
accurately (Ritz and Streibig, 2008; Sanft and Walter, 2020). If this step is missed, all
the results and interpretation of the analysis will be wrong (Baty et al., 2015). The value
of the coefficients can be correctly interpreted only if the correct model has been fitted.
Therefore, it is important to identify useful models (Motulsky and Brown, 2006). The
selection of the model to use is based on the theory from which the data being analysed
is based and past experience in the field (Motulsky and Brown, 2006). For example,
in demographics, for the study of population growth, the logistic nonlinear regression
growth model is useful. Nonlinear regression also assumes that the data being used is
quantitative, and as such, categorical data must be coded as binary (Ritz and Streibig,
2008). Real-world datasets tend to find meaningful applications when analysed using
nonlinear regression models than linear models (Chen et al., 2020). Section 5.4 provides
the research finding on regression analysis. i.e. the study evaluates the relationship
between time and the number of unique SRCIP observed per DSTIP.
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3.8 Mathematical Modeling

Mathematical modelling is a cyclical process in which real-life problems are translated into
mathematical language, solved within an algebraic system, and the solutions tested back
within the real-life system (Bush and Mosteller, 1951; Barbosa, 2003; Barnes and Fulford,
2011). Some of the good examples of applications that use mathematical modelling on
daily basis are google maps when a driver wants to find the fastest route from point A to
point B. The weather application and meteorology departments use mathematical models
to understand changes in weather patterns and calculating the likelihood of the weather
changing, be it from a rainy day to a sunny one.

Another example would be when a driver wants to calculate the time taken to drive
through a specific distance between two towns. Knowing the distance and preferred
speed, the driver can estimate the time it takes to travel between the towns using the
mathematical model that relates time to distance over speed. Engineers and architects
use mathematical models when designing houses or constructing roads in order to find out
the amount of resources needed for their projects. Living in the Covid-19 Pandemic era,
epidemiologists have used a series of mathematical models to calculate the rate at which
the virus is spreading. These are just some of the real-world applications of mathematical
models.

To use mathematical modelling, one has to be presented with a real-life situation to ex-
amine its structural features or characteristics, and through the application of relevant
mathematics, find a solution that solves the problem at hand (Barbosa, 2003; Blomhøj,
2009). The process of developing a mathematical model hinges on three critical points.
Firstly, one developing the model needs to identify the most important parts of the prob-
lem at hand that one is trying to develop, something without which the model will not
work (Barbosa, 2003; Barnes and Fulford, 2011). Secondly, knowledge about a system
one is solving and the objective with which the model is being developed is also required.
Models are developed for an array of reasons among which are developing scientific un-
derstanding, testing the effect of changes in a system, and aiding decision making which
could be tactical in nature or strategic (Abramowitz and Stegun, 1972; Barbosa, 2003;
Barnes and Fulford, 2011). In this research study, the main objective in mind when de-
veloping mathematical models was to aid model users in decision making and give them
some level of confidence in the system they are using.

Whatever the objective is, each process has the same cycle which it has to go through
in order to develop it. The cycle involves building the model, studying it, and testing it
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(Barbosa, 2003; Blomhøj, 2009). Once that is done, the objectives that were identified at
the beginning need to be considered in the usability of the model (Barnes and Fulford,
2011). If a model cannot be used, then there is no use developing it, making this last aspect
crucial in this development cycle. In the development cycle, all underlying assumptions
governing the model need to be laid out to the end-user (Abramowitz and Stegun, 1972;
Blomhøj, 2009).

It is these assumptions that allow the model to achieve its intended objectives. Future
analysis and evaluation of the system treats these assumptions as being true and the
results of such an analysis are only as valid as the assumptions (Abramowitz and Stegun,
1972; Barbosa, 2003). Every user of the model needs to accommodate all these underlying
assumptions, otherwise the intended objective will not be met. Where the system being
modelled is more complex, one cannot simply jump from an assumption to an equation.
There has to be a methodical approach, both when describing the system and when stating
assumptions. In such cases, flow diagrams describing the problem offer a visual aid to
this end.

Having defined the problem and made the assumptions, one needs to clearly define the
problem parameters and identify all the variables that support and explain the problem
defined (Barbosa, 2003; Barnes and Fulford, 2011). Defining the variables is critical
because at this stage one gets an understanding of how the different parts of the problem
interact with each other. Relationships are defined at this stage i.e. which of the defined
variables is dependent (the information one is seeking to find from the model) and which
one is independent (the information that one already had and acts as input to the model)?
(Blum, 2015; Bora and Ahmed, 2019). At times, one is faced with a scenario where
constants (variables that do not change) need to be taken into consideration.

Thus from the problem statement, one gets the dependent variables (output) (Bora and
Ahmed, 2019). When assumptions are taken into account, coupled with further analysing
of the data and brainstorming all factors to consider, one gets an understanding of the
dependent, independent and fixed model parameters of the model to be developed (Bora
and Ahmed, 2019; Kaiser, 2020). After these variables are defined, it is when one begins
to understand how the mathematical model would work to accommodate all the factors
considered. Without such definitions, one cannot develop the equation(s) which later
form the model to address the problem at hand.

The tools used to test, analyse, and arrive at the intended solution, vary depending on
the problem i.e. from pen and paper, to computer software tools like matrix labora-
tory(MATLAB), R, Statistica and Python to test and analyse the findings (Blum, 2015;



3.8. MATHEMATICAL MODELING 53

Bora and Ahmed, 2019; Kaiser, 2020). Bora and Ahmed (2019); Kaiser (2020) added the
need to use every mathematical theory or topic that would help in finding the solution
to the problem at hand. This would range from basic algebra, regression analysis, to cal-
culus. Blomhøj (2009); Barnes and Fulford (2011) presented another approach to model
development that involves working with the models that are already available but redefine
the underlying assumptions.

Using models that are already available prevents the reinvention of some processes or steps
that are already known and thus one focuses on the new dimensions or derivatives of the
old mathematical model(s). When developing from models that are already in existence,
the new underlying assumptions need to be stated explicitly, and as such, a derivation
leads to a model that serves a different purpose than the original objective with which it
was created for (Abramowitz and Stegun, 1972; Blomhøj, 2009; Barnes and Fulford, 2011).
Underlying assumptions are so critical to model development to an extent that they are the
reason why there is a fundamental difference between classical mechanics and relativity
theory developed by Einstein (Abramowitz and Stegun, 1972). In classical mechanics,
Newton assumed that mass is a universal constant, whereas Einstein considered mass
as being variable (Abramowitz and Stegun, 1972). That is how critical and sensitive
assumptions are to model development. The models developed in this research study took
this approach of working with models that already exist while changing their underlying
objectives and assumptions.

Another factor to consider is the nature of the data that a user needs to test the model
and validate it (Barnes and Fulford, 2011). The behaviour of the model hinges on this
point. A model can be described as qualitative, which aims to answer the question of how
or it can be described as quantitative, when it aims to answer the question of how much
(Blomhøj, 2009). These two questions help a model developer in knowing what approach
to use in model development and the kind of data needed to answer this question. In this
study, the models developed were aimed at answering the question of how much. The
sensitivity of the model to parameter changes needs to be considered as well (Barnes and
Fulford, 2011). This is important because it helps to vary model parameters and assess
the associated changes in model outcomes that allow the model developer to identify its
weak points (Blomhøj, 2009). Once identified, these weak points can be strengthened by
experimentation, or may be simply noted for the developer to take caution in how the
model is applied in a real-world scenario. Model sensitivity analysis also helps the model
developer to accommodate a range of possible (acceptable) values if there is a change in
value input (Blomhøj, 2009; Barnes and Fulford, 2011).
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It is also important to take into consideration the possibility of errors that come along with
the computation of the results of the model (errors in functional form, or to parameter
estimates) and inherent errors in the data that is to be used (Barnes and Fulford, 2011).
Errors can also come in due to an oversight of certain factors during model development,
or the environment with which the model is being used (Barnes and Fulford, 2011). Once
the model developer understands why these errors occur, then a basis for deciding how
to react to them can be formulated (Blomhøj, 2009).

All of these factors are identified during the testing phase of the model development
cycle. Once rigorous tests have been done, and the model developer is happy with the
performance then the model can be deployed for use by others. The model needs to have
proper documentation to support all the underlying conditions, methods, and parameters
with which it was developed (Blomhøj, 2009).

3.9 Time Series Similarity Scoring Techniques

One of the most common analyses that are done in time series analyses is time-series fore-
casting (Matalas, 1967). The basic principle of time series forecasting is the computation
and prediction of future values and behaviour of a time series based on past events (Con-
treras et al., 2003; Ostashchuk, 2017). Several tests are conducted in Chapter 6 which
aim at identifying the accuracy of the forecasting. The overall objective of these tests is
to quantify the differences that exist between the baseline dataset (which represent actual
values) and data samples (which represent predicted values) are from the actual values.
While this study is not interested in predictive analysis, the technique used in quantifying
the differences in predicted and actual values fits very well with our line of study when it
comes to quantifying the differences between two-time series datasets. Among the most
important tests include Mean Absolute Percentage Error (MAPE), Symmetric Mean Ab-
solute Percentage Error (SMAPE), Mean Absolute Error (MAE), and Mean Absolute
Scaled Error (MASE).

3.9.1 Mean Absolute Percentage Error (MAPE)

Mean Absolute Percentage Error (MAPE) is an average of absolute percentage error (Kim
and Kim, 2016). MAPE conveys the level of accuracy (exactness) of a forecasted timeline
to the actual timeline as a percentage of the error (de Myttenaere et al., 2016). However,
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this study is not aimed at forecasting the baseline or the subnet equivalent. Instead, using
the same principles of computing the accuracy of forecasted values, the study will compute
the gap that exists between the baseline study and the subnet equivalents. In this case, the
study compares the /24 IPv4 sub-sampled values against each of the subsequent subnet
values. On the other hand, the original MAPE has forecast values. To use MAPE within
the study’s context, the actual values were equivalent to the baseline dataset (/24 IPv4
dataset) while the observed values were samples drawn from the baseline datasets which
mimicked the size of /25 to /30 formulating subnet equivalents. That is how actual and
observed values have been defined in the rest of the thesis. Let Z(t) and Zˆ(t) denote the
actual and subnet equivalent sample values at data point t respectively (Kim and Kim,
2016). Smaller values of MAPE indicate a better fit, i.e. the smaller the mean absolute
percentage error, the closer you are to finding the line of best fit (de Myttenaere et al.,
2016). Thus smaller values in our study are proof of how the subnet equivalent under
study is closer to the baseline dataset (/24 IPv4 subnet). MAPE is defined in Equation
3.1 as:

MAPE =
1

N

N∑
t=1

|Z(t)− Zˆ(t)|
Z(t)

× 100 (3.1)

3.9.2 Symmetric Mean Absolute Percentage Error (SMAPE)

Symmetric Mean Absolute Percentage Error (SMAPE) is an alternative to MAPE when
there are zero or near-zero demand for items (Hyndman and Koehler, 2006). Let Z(t) and
Zˆ(t) denote the actual and the subnet sample (be it equivalently sized to a /27, /28, or
/29 subnet) values at data point t respectively (Kim and Kim, 2016). In contrast to the
MAPE, SMAPE has both a lower bound and an upper bound. This symmetrical nature
of SMAPE gives it a higher level of accuracy in its computational value than MAPE.
SMAPE delimits to an error rate of 200% in order to reduce the influence of low volume
items (Hyndman and Koehler, 2006). Low volume items are problematic because they
could otherwise have infinitely high error rates that skew the overall error rate (Hyndman
and Koehler, 2006). The interpretation is similar to that of MAPE since they are all
percentage-based. In line with the study, SMAPE is the subnet samples of /24 IPv4
minus actual values divided by the sum of baseline value and subnet equivalent values as
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expressed in Equation 3.2:

SMAPE =
2

N

N∑
t=1

|Z(t)− Zˆ(t)|
Z(t) + Zˆ(t)

× 100 (3.2)

3.9.3 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) measures the average magnitude of the errors between actual
observations and a set of predictions in which all values have equal weight (Varouchakis
and Hristopulos, 2013). When measuring the magnitude of errors, MAE does not consider
the direction of the set pairs under observation (Willmott and Matsuura, 2005). Like in
Equation 3.2, Z(t) and Zˆ(t) denote the actual and subnet sample values at data point
t respectively. MAE has negatively-oriented scores, meaning that lower values are better
than higher values (Willmott and Matsuura, 2005). The smaller the mean absolute error,
the closer one is to finding the line of best-fit (Wang and Bovik, 2009). Thus smaller
values in our study are proof of how the subnet sample is closer to /24 IPv4 subnet.
MAE is defined in Equation 3.3 as:

MAE =
1

N

N∑
t=1

|Z(t)− Zˆ(t)| (3.3)

3.9.4 Mean Absolute Scaled Error (MASE)

Mean Absolute Scaled Error (MASE) is unlike the other two quantifying techniques,
MASE uses a scaling error based technique instead of a relative measure (Hyndman and
Koehler, 2006). MASE can only be computed when there are multiple time series to
compute against each other (Hyndman and Koehler, 2006). MASE uses a scale based on
the in-sample MAE as shown in Equation 3.3, which is independent of the scale of the data
(Franses, 2016). The scale makes MASE less sensitive to outliers and easy to interpret
and use in the same lines as MAPE or SMAPE (McKenzie, 2011). According to Hyndman
and Koehler, the authors of the technique, a scaled error is less than one if it arises from
a better forecast than the average one-step naive forecast computed in-sample. On the
other hand, if the forecast is worse than the average one-step naive forecast computed
in-sample, then it is greater than one. Bringing it into our context, if the sample drawn
from /24 IPv4 subnet is better aligned to the original /24 IPv4, then the value will be less
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than one. Also, if there are significant differences, then the value will be higher than one.
Thus values of MASE that are less than one are ideal (Franses, 2016). In Equation 3.5,
MAE in-sample, naive is the mean absolute error produced by a naive forecast (subnet
sample). In this equation, At represents the true values of the baseline dataset at time t

while At-1 represents the predicted values of the baseline dataset at time t-1. However,
the explanation of how the equation has been used in this study is found in Section
6.1.4.

MAEin−sample,naive =
1

N − 1

N∑
t=2

∣∣∣∣ (At)− (At−1)

∣∣∣∣ (3.4)

MASE =
MAE

MAEin−sample,naive

(3.5)

Thus, using MASE, MAPE and SMAPE the study computed the error margin that exists
between /24 IPv4 subnet and the subnet equivalents. Using the error margins, the study
computed the level of accuracy that each subnet equivalent had in relation to the baseline
dataset.

3.10 Information Retrieval and Text Mining Techniques

In line with the Information retrieval and text mining technique, this study used random
sampling of /24 IPv4 net-block, with interest in the TCP destination ports (DPORTs)
of the baseline dataset. The reason for the primary focus on TCP DPORTs has been
explained in Section 1.5 The aim was to identify which sample can best represent the
baseline dataset. Initially, the techniques were developed to provide a statistical measure
that evaluates how significant certain words are to a given document in collection or
corpus (Schütze et al., 2008). However, this study found a purpose for these techniques
in quantifying the differences that are contained in the subnet samples when comparing
against /24 IPv4 net-block.

When these techniques are presented in future sections, they will be presented in the
context of this study and not text processing i.e. the terms used are in line with the
content of the datasets at hand. This study will show how comparable the techniques
are in terms of their scores. It will also show which subnet equivalent is comparable
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to the baseline dataset. More importantly, it will prove that information retrieval and
text mining techniques are a viable option to quantify subnet equivalent ports of an IBR
dataset. The study proposed the use of information retrieval (IRT/IR) and text mining
techniques to gauge the samples against the original dataset (Aizawa, 2003). Among
such techniques, include Term Frequency (TF), Inverse Document Frequency (IDF), Term
Frequency - Inverse Document Frequency (TF-IDF) and Jaccard Distance (JD) (Shameem
and Ferdous, 2009). The results and application of all these techniques found in this
section are presented in Section 6.9.

3.10.1 Jaccard Distance (JD)

(a) Union (b) Intersection

Figure 3.4: Union (∪) and intersection (∩) of set A and set B

Jaccard Distance (JD) quantifies how dissimilar two sets are, i.e. how is Set A different
from Set B (Schütze et al., 2008). The use of JD to measure the distance between two
or more sets is at the core of many analyses such as clustering (Aggarwal, 2003), and
time series (Parthasarathy, 2005). It is also often referred to as Intersection over Union
because of the formula used (Schütze et al., 2008). Basically, it is an intersection over a
union of two sample sets understudy as shown in Figure 3.4.

JD(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(3.6)

In this study, JD quantifies how dissimilar /24 IPv4 net-block dataset (represented by A)
is from subnet equivalents (/e25 to /e30) (represented by B). Using JD this research will
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compare the differences that exist between baseline datasets from the telescopes under
study and their sub-samples (/e25 to /e30) (represented by B). To be more specific, JD
will quantify the differences in terms of DPORT count in the baseline and its sub-samples.
A good interpretation of JD is presented by Parthasarathy (2005) where he stated that a
JD of zero means that the baseline dataset is identical to the subnet equivalent while a JD
of one means that there is no correlation between the baseline and the subnet equivalent.
Using this interpretation, it can be inferred that sub-samples (which represent sets) which
show a JD score closer to zero have DPORTs that are identical to those found in the
baseline datasets. Those sub-samples that show a JD score closer to one implies that
there is no correlation between the baseline and the sub-sample under study.

Equation 3.6 shows the mathematical representation of JD. It is important to note that
the use of JD was inspired by how it had been applied in other fields. For instance,
Parthasarathy (2005) showed in his work that JD was used to assess the clinical drugs for
efficacy and hepatotoxicity of drugs where each patient provides a new dataset, and thus
two patients assessed in that regard. Yuan et al. (2017) showed how JD has been used
to automate skin lesion segmentation using Convolutional Neural Networks (CNN). This
was done through the use of a novel loss function which was based on JD to eliminate the
need for sample re-weighting.

JD has also found its applications in the field of machine learning as stated by Shameem
and Ferdous (2009), where numerous cases have incorporated it for data partition, cat-
egorisation of items of a similar pattern with the K-Means algorithm. Mobile Ad Hoc
Networks (MANETs) have also found a purpose for JD, where it is used to select dissim-
ilar nodes during the discovery phase (Reina et al., 2014). The purpose is to reduce the
redundancy of routing packets during the discovery phase of the reactive routing protocols
for MANETs (Reina et al., 2014).

From the few examples cited this far, it is apparent that measuring the relative size of the
overlap of two finite sets A and B has much use in practical applications. In this study,
JD was used primarily when working with DPORTs to evaluate how the destination ports
were affected by the sampling techniques used, be it sequential or random sampling. The
research findings for JD have been presented in Section 6.9

3.10.2 Term Frequency (TF)

Term Frequency (TF) was designed to quantify how frequent a term appears within the
document under study (Schütze et al., 2008). It was designed in such a way that it
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takes into account the length of the document since documents cannot all have the same
length (Callan, 2002). This eliminates the bias of the ubiquity of certain terms in longer
documents than shorter ones. However, in this study, documents have been equated to
subnet equivalents. The terms of interest in our case were SRCIP and DPORTs for TCP
and UDP traffic.

Term Frequency (TF) has been used to aid organisations with strategic decision making
because of its ability to follow external rules (Santhanakumar et al., 2018), i.e. it can be
customised to meet user’s needs. Like, Jaccard Distance, TF has found its use in machine
learning algorithms (Schütze et al., 2008). Among these include its use in the development
of Support Vector Machines (SVM), identification of web crawlers, clustering and ranking
of data and vector space classification (Schütze et al., 2008). Term frequency has been
compared with and used along the lines of some useful statistical models like Naive Bayes
(Lewis, 1998). Search engines like Google have developed their algorithm around term
frequency where items of interest are ranked based on their scores (Callan, 2002). Its
ability to aid in decision making is viable proof that TF is reliable for the identification
of variations that exist between subnet equivalents and /24 IPv4 net-block.

In this study, TF quantifies how frequent a DST port appears in a subnet equivalent. The
weight is used to compare with the scores found in a baseline dataset.

In this study, Equation 3.7 and the variables it has have been used as follows: tfi,j rep-
resents the number of occurrences of port i in subnet/subnet equivalent j, ni,j represents
the number of subnet equivalents containing port i. k is the total number of documents
being reviewed, and since this study is working with one subnet at a time, the value of k
in this study will always be 1.

tf(i,j) =
ni,j∑
k

ni,j

(3.7)

For example, if when analysing how many times Port 23/TCP appears in /25 subnet, then
k is 1 meaning /25 subnet, tfi,j represents the number of occurrences of Port 23/TCP in
subnet 25. The same analysis will continue for other subnets as well to see how many times
Port 23/TCP appeared in the subnet under study. If the frequency of the Port 23/TCP
is identical in all subnets, then the scores will be the same, and if the frequency within
the subnet is different, the scores will be different. In our case, the study was interested
in all the ports registered, not just Port 23/TCP, thus the same principle will apply as
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well when computing the scores. The research findings for TF have been presented in
Section 6.9

3.10.3 Inverse Document Frequency (IDF)

Inverse Document Frequency (IDF) is a slight variation of TF in that while TF measures
the frequency in which a term appears in the document, IDF takes into account the fact
that not all terms are significant (Aizawa, 2003). This is to say that frequency of a variable
is weighed more that its uniqueness. The rationale is that one can learn more from terms
that are not frequent than those that are frequent. As such, there is a need to weigh down
the frequent terms while at the same time scaling up rare terms. In short, it is interested
in unique occurrences within a document. To a degree, IDF follows the law of diminishing
returns.

Inverse Document Frequency (IDF) was introduced to strike a balance between the terms
that were uncommon in documents and has since escalated to other fields such as image
and language processing (Aizawa, 2003; Parthasarathy, 2005). This escalation has been
attributed to its heuristic nature (Aizawa, 2003; Parthasarathy, 2005) i.e. its ability to
adapt to practical application. Its application has extended to automatic term extrac-
tion in computational terminology and machine learning(Aizawa, 2003). In statistics, its
application is seen in chi-squared tests (Smadja, 1993), log-likelihood ratio, and pairwise
mutual information (Wiener et al., 1995), among others.

In this study, Inverse Document Frequency (IDF) primarily focuses on the DST ports that
are not common between the subnet equivalent. The rationale is that one can learn more
from the DST ports that are not common in both the /24 IPv4 and the subnet equivalents
under study than with the common ports. As such, the common DST ports are given
a score of zero while those that are significant are weighted and a score is computed. A
high score shows how dissimilar the subnet equivalent is from the baseline dataset.

In this study, Equation 3.8 and the variables it has have been used as follows: N
represents the total number of subnet equivalents under study. dfi represents the number
of subnets containing i.

idf = log
N

dfi
(3.8)
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For example, in this study, by focusing on those ports that are not common, more in-
sights can be found in seeing how one subnet or subnet equivalent is different from the
other. An uncommon port can be any TCP/UDP port that is not included in the
common services ports category, i.e. other than the commonly used ports such as 80
(HTTP), 443 (HTTPS), 20/21 (FTP), 22 (SSH), 23 (Telnet), 3389 (RDP), 1521 (Ora-
cle), 3306 (MySQL), 5432 (PostgreSQL), 53 (DNS), 1433 (MSSQL) and 137/138/139/445
(SMB/CIFS). If the frequency of the uncommon ports is identical in all subnets, then the
scores will be the same, and if the frequency of the uncommon ports within the subnet is
different, the scores will be different. This way it is possible to quantify how one subnet
is different from the next. The research findings for IDF have been presented in Section
6.9

3.10.4 Term Frequency - Inverse Document Frequency (TF-IDF)

Lastly, the study reviewed Term Frequency-Inverse Document Frequency (TF-IDF) which
is a merge of TF and IDF (Aizawa, 2003). TF-IDF takes into account the weight of fre-
quent terms computed in TF and unique terms that are easily overlooked in TF (Aizawa,
2003). This combination ensures that term frequency and the uniqueness of terms be-
tween documents are taken into account when computing their difference (Chum et al.,
2008). In addition, TF-IDF improves probabilistic interpretation of weighting items in
a document, which gives a better understanding of the statistical ranking mechanism
(Hiemstra, 2000). Because of its hybrid nature, TF-IDF is a perfect representation of the
best of TF and IDF as it takes into account the weight of frequent terms computed in
TF and unique terms that are easily overlooked in TF (Aizawa, 2003). This ensures that
the frequency of terms and the uniqueness of terms between documents are taken into
account in computing their difference.

The formula for computing TF-IDF is shown in Equation 3.9. In this study, Equation
3.9 and the variables have been used as follows: N represents the total number of subnet
equivalent being evaluated, dfi represents the number of subnet equivalent containing
port i and tfi,j represents the number of occurrences of port i in subnet equivalent j

tf.idfi,j = tfi,j ∗ log(
N

dfi
) (3.9)

Having verified that the information retrieval and text mining techniques herein can be
applied to more than text and documents, this study will move to show how they were
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used in weighting the differences that exist between /24 IPv4 net-block and its subnet
equivalents using unique ports found in IBR datasets. The research findings for TF-IDF
have been presented in Section 6.9

3.11 Chapter Summary

This chapter introduced and explained all the statistical techniques that will be used in
Chapters 5 and 6. The main objective of this chapter was to show how most of these
well-known statistical techniques were used by other researchers and explain how this
research study used them to achieve its objectives.

The chapter started by discussing data sampling and why it is needed in this study in
Section 3.1. This is followed by a discussion on Bootstrapping as a simulation tool
in Section 3.2. This section covered two types of bootstrapping: parametric and non-
parametric. Essentially, sampled data will have missing values and thus will not be exactly
as the baseline data. However, with bootstrapping, we can simulate the samples to mimic
the data points observed in the baseline data by using a statistical parameter of interest
to reproduce the data. In our case, the mean was used as the statistical variable for
bootstrapping the data samples. The study went further to look at the strengths and
limitations of each bootstrap technique used in this study in Section 3.3. From here,
the study reviewed the literature on Confidence Interval (CI) and the limitations that
come with bootstrapping when using CI in Section 3.4. Applications of bootstrapping
and confidence interval were discussed in Section 3.5. The study was also interested in
knowing how the various variables in IBR data relate to each other over time. In order
to achieve that, this study had to assess and identify if there is any relationship between
the variables of interest by using regression analysis in Section 3.6. This section was
immediately followed by Section 3.7 which looked at the types of regression analysis
that were considered for this study. The definition of concepts, and all important features
needed to formulate mathematical models are explained in Section 3.8

Since the study aimed to observe how representative different samples of data collected
were to the baseline dataset, there had to be a way of quantifying how such samples
differ from the main dataset. This led the study to tools like MAPE, SMAPE, MAE and
MASE to quantify such differences. This study also had to assess differences that exist
between ports, particularly those in the DSTIP address blocks as these are the ones a
network telescope user has control over. To do that, information retrieval techniques were
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used to quantify these differences. These details are discussed in Sections 3.9 and 3.10
respectively.

Chapters 5 and 6 will use these techniques to compute the results and derive answers
needed from the datasets used. More referencing to this chapter from Chapters 5 and 6
will be made in order to have a proper grasp of how these statistical techniques were used
in this research study. Future sections that use this chapter have also been highlighted
throughout its course.



4
Data Definition and Exploration

This chapter focuses on defining the data that was used for this research study. It also
looks at an exploratory data analysis approach to the IBR data. The chapter explains the
transformative process that raw pcap files have had to go through in order to be ready for
use in the chapters that follow. The datasets explored in this chapter are the ones that
the study will look at in Chapters 5 and 6

The chapter starts with Section 4.1, which discusses where the data was taken from and
the datasets used in the study. This section goes further to explain the characteristics
of each dataset using data dictionaries. The kind of sampling used and how the data
was processed are also considered in this section. Following this is Section 4.2 which
adds more details on the characteristics of the data for the reader to better understand
it. Section 4.3 follows immediately and looks at the graphical representation of the
datasets that were used. The Chapter concludes with a summary in Section 4.4. Note
that exploratory work was conducted over a larger range of data (datasets from 2017 -
2021), however, for reporting purposes, most recent data dated 2021 was selected.

65
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4.1 Data Sources

The Rhodes University network telescopes have been active for over fifteen years (Irwin,
2011), but this research will focus on most recent datasets to provide up to date activities
happening in the network telescopes and based on current IBR trends. The data used
in this research was obtained from Rhodes University’s network telescopes (Irwin, 2011),
collected from five network telescopes. This provided an opportunity to observe traffic
from different network sensors. All the network telescope sensors are physically located
in South Africa. Each of the five telescope sensors consisted of a /24 net-blocks, routed
to a collection server. Note that there are a lot of similarities in the datasets that were
collected in the Rhodes University telescopes as is shown in previous work (Irwin, 2013;
Nkhumeleni, 2014). Thus in presenting the data, not all telescope datasets are going to
be presented given that the results would be near identical given previous work done on
them.

For this research, nine datasets have been selected from three different /24 IPv4 network
telescopes. Each network telescope has contributed three months worth of data collected
between 1 January 2021 to 31 March 2021 and discussed in Section 4.1.1. For security
reasons, only the first octet of the destination IP addresses is displayed while the other
three octets have been masked. Each dataset is named after the network telescope from
which its data was collected. This is followed by the month in which the data was collected
and, thereafter, the year in which this data was collected. To illustrate this naming
convention, let us look at the first dataset: 146/8-012021, this shows the reader the
name of the network telescope (146/8) while hiding the last three octets of that network
telescope followed by the month of January (represented as 01 ) and the year in which
the data was collected (in this case 2021 ). For Network telescope 196/8, there are three
network telescopes running on 196/8 but the remaining three octets are different. Thus
for labelling purposes, this study only picked one of the three and labelled it 196-A/8.
The datasets from it are named after this naming convention plus the month and year
in which the data was collected. For example, dataset 196-A/8-012021 was collected
in January. More on the naming convention used throughout this report can be found in
Section 4.1.1. The naming convention used in Section 4.1.1 is consistent with what
was presented in Section Section 1.6.
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4.1.1 Data Dictionaries for IBR Datasets

This section gives a breakdown of the datasets by showing the dataset composition using
the data dictionaries for each dataset. A quick overview of each of the data dictionaries
shows the time frame from which the data was collected, the unique name of the dataset,
and the number of unique source (SRC) IP addresses that contributed to the traffic
observed in each given month. The data dictionaries also show the number of unique
destination (DST) IP addresses.

Each data dictionary contains dataset names and their attributes contributed by individ-
ual network telescopes. Table 4.1 shows a breakdown of network traffic based protocol
and the number of unique sources contained in each dataset. Note that these are the
attributes contained in each of the data dictionaries presented in Tables 4.1 - 4.2. The
total number of unique SRCIP addresses observed are later broken down to see under
which protocol contributed more unique SRCIP addresses. It also shows the total traffic
1 observed in each month, which is later broken down by names of the protocols that
each packet used during transmission from the source IP address to the targeted network
telescope.

For this, the study had Transmission Control Protocol (TCP), User Datagram Protocol
(UDP) and Internet Control Message Protocol (ICMP). Both the total traffic and the
number of unique sources observed were represented using their proportions to see their
representativeness in the overall dataset. From here onwards, the study will focus on the
specific attributes and not give this description again.

The primary focus of the data dictionaries presented in this section is to identify the name
of the network telescopes where the data was collected from, the number of packets from
each of the major protocols identified in the dataset, the duration of data collection for
the specific dataset, and the number of unique sources contained in each dataset and how
proportional these unique sources are to the overall traffic observed. These details are seen
in Tables 4.1 - 4.3. In all the datasets used, TCP packets made a major contribution to
the traffic composition, followed by UDP and then ICMP. The other protocols identified
were GRE and SCTP, but their proportion was negligible and as such they were added
into the category of other to fit in the dictionaries.

1packets and traffic will be used interchangeably to mean the same thing
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Table 4.1: Data Dictionary for Telescope 146/8

Dataset Name: 146/8-012021
Start Fri Jan 1 00:00:00 2021 End Sun Jan 31 23:59:59 2021

Duration 31 Days
Total Traffic: 34,238,782 Unique Sources: 617,420 Unique Destinations: 256
Protocols pkts % Sources Uniq src %

TCP 30,350,954 88.64 484,009 78.39
UDP 3,594,676 10.50 124,900 20.23
ICMP 293,062 0.85 8,421 1.36
Other 90 0.01 90 0.01

Dataset Name: 146/8-022021
Start Mon Feb 1 00:00:00 2021 End Sun Feb 28 23:59:59 2021

Duration 28 Days
Total Traffic: 36,298,338 Unique Sources: 533,461 Unique Destinations: 256
Protocols pkts % Sources Uniq src %

TCP 32,460,888 89.42 408,591 76.59
UDP 3,578,212 9.85 116,718 21.88
ICMP 259,146 0.71 8,060 1.51
Other 92 0.02 92 0.02

Dataset Name: 146/8-032021
Start Mon March 1 00:00:00 2021 End Wed March 31 23:59:59 2021

Duration 31 Days
Total Traffic: 37,772,339 Unique Sources: 599,170 Unique Destinations: 256
Protocols pkts % Sources Uniq src %

TCP 33,722,026 89.27 462,369 77.17
UDP 3,743,119 9.90 128,071 21.37
ICMP 307,005 0.81 8,541 1.43
Other 189 0.02 189 0.03

The data dictionary shown in Table 4.1 presents data collected from 146/8 network
telescope. This telescope recorded a total of 108,309,459 million events from January
2021 to March 2021. These events are presented in form of the number of packets. These
packets were sent from 1,750,052 unique SRCIP addresses that were sent to all 256
DSTIP addresses. In this data dictionary, there is no direct relationship between the
total number of events observed within a month and the total number of unique SRCIP
observed in the same month. This is observed in dataset 146/8-012021 which shows
617,420 unique SRCIP, the highest for network telescope 148/8, yet shows the lowest
number of events observed within this month (34,238,782 packets).
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Table 4.2: Data Dictionary for Telescope 155/8

Dataset Name: 155/8-012021
Start Fri Jan 1 00:00:00 2021 End Sun Jan 31 23:59:59 2021

Duration 31 Days
Total Traffic: 39,489,736 Unique Sources: 637,014 Unique Destinations 256
Protocols pkts % Sources Uniq src %

TCP 35,497,782 89.89 501,739 78.76
UDP 3,769,639 9.54 126,730 19.89
ICMP 222,209 0.56 8,439 1.32
Other 106 0.01 106 0.02

Dataset Name: 155/8-022021
Start Mon Feb 1 00:00:00 2018 End Sun Feb 28 23:59:59 2021

Duration 28 Days
Total Traffic: 39,948,711 Unique Sources: 550,915 Unique Destinations 256
Protocols pkts % Sources Uniq src %

TCP 36,031,250 90.19 424,861 77.12
UDP 3,721,754 9.21 117,807 21.38
ICMP 195,599 0.48 8,139 1.48
Other 108 0.12 108 0.02

Dataset Name: 155/8-032021
Start Mon March 1 00:00:00 2018 End Wed March 31 23:59:59 2018

Duration 31 Days
Total Traffic: 43,043,116 Unique Sources: 644,182 Unique Destinations 256
Protocols pkts pkt % Sources Uniq src %

TCP 37,753,171 87.71 484,030 75.13
UDP 5,088,935 11.82 151,742 23.56
ICMP 200,819 0.47 8,219 1.28
Other 191 0.001 191 0.03

1 rounded due to two decimal places [ actual value = 0.0004 ].

The data dictionary shown in Table 4.2 presents data collected from 155/8 network
telescope. This telescope recorded a total of 122,482,563 million events in the first
quarter of 2021. Apart from the high rise in packets, there is also an increase in the
number of unique SRCIP addresses 1,832,111 that were sent to all 256 DSTIP addresses.
A comparison between Network telescope 148/8 and 155/8 can be made here. In this
data dictionary, there is no direct relationship between the total number of events observed
within a month and the total number of unique SRCIP observed in the same month. The
highest number of packets and unique SRCIP addresses are observed in dataset 155/8-
032021 which shows 644,182 unique SRCIP. Dataset 155/8-032021 also shows the
highest number of packets when compared to other months (43,043,116 packets).
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Table 4.3: Data Dictionary for Telescope 196-A/8

Dataset Name: 196-A/8-012021
Start Fri Jan 1 00:00:00 2021 End Sun Jan 31 23:59:59 2021

Duration 31 Days
Total Traffic: 48,079,105 Unique Sources: 665,897 Unique Destinations 256
Protocols pkts % Sources Uniq src %

TCP 42,043,059 87.44 538,891 80.93
UDP 5,764,771 11.99 118,618 17.81
ICMP 271,166 0.56 8,279 1.24
Other 109 0.00* 109 0.016

Dataset Name: 196-A/8-022021
Start Mon Feb 1 00:00:00 2021 End Sun Feb 28 23:59:59 2021

Duration 28 Days
Total Traffic: 42,086,481 Unique Sources: 565,005 Unique Destinations 256
Protocols pkts % Sources Uniq src %

TCP 36,046,727 85.65 444,282 78.63
UDP 5,767,477 13.70 112,744 19.95
ICMP 272,188 0.64 7,890 1.39
Other 89 0.001 89 0.03

Dataset Name: 196-A/8-032021 Description
Start Thu Feb 1 00:00:00 2018 End Wed March 31 23:59:59 2021

Duration 31 Days
Total Traffic: 49,866,136 Unique Sources: 618,660 Unique Destinations 256
Protocols pkts pkt % Sources Uniq src %

TCP 33,679,719 67.54 488,379 78.94
UDP 15,824,966 31.73 122,157 19.75
ICMP 361,224 0.72 7,897 1.27
Other 227 0.002 227 0.04

1 rounded due to two decimal places [ actual value = 0.0002 ].
2 rounded due to two decimal places [ actual value = 0.0004 ].

Table 4.3 shows data dictionary with datasets collected from 196-A/8 network telescope.
This network telescope recorded a total of 140,031,692 million events from January
2021 to March 2021. This is the highest number of packets recorded by any of the
network telescopes under study. Of all network telescopes, 196-A/8 network telescope
recorded the highest number of unique SRCIP addresses 1,849,562. There is also no
direct relationship between the total number of events observed within a month and the
total number of unique SRCIP observed in the same month. Overall, February recorded
the lowest number of events in all three network telescopes. This is true for both the
number of unique SRCIP addresses and the total number of packets. On the other hand,
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March showed the highest number of packets recorded by all three network telescopes.

Table 4.4: Total packets received per telescope

Network Telescope Total No. of Packets

146/8 108,309,459
155/8 122,482,563

196-A/8 140,031,692

Table 4.4 is a summary table for total traffic received by each of the three network
telescopes under study. From the table, it is apparent that during the same time frame,
Network Telescope 196-A/8 recorded more packets than the other two. Details about
the traffic breakdown by month have already been presented in Tables 4.1 - 4.3. A
breakdown of this traffic by top 20 SRCIP and DPORTs is presented in Section 4.2.

Due to the high volume of TCP packets and the high number of unique sources observed
per network telescope, much of this research study focused only on TCP packets than
anything else. UDP datasets are mentioned in Section 4.2 when evaluating the top 20
SRCIP, DPORTs and SRCIP addresses otherwise each time a dataset is mentioned, it
refers to TCP dataset unless otherwise specified. UDP traffic was used for validation
purposes only. However, the procedures that were carried out on TCP packets can be
done on any of the protocols. The initial analysis worked with packets but eventually the
focus shifted to working with unique SRCIP and DSTIP addresses.

4.1.2 Data Sampling

The two main sampling strategies used in this research study were random sampling and
sequential sampling. For sequential sampling, an assessment was made to gauge how each
subnet sample represented a baseline dataset. Table I.1 found in Appendix I shows
the proportions of each of sequential samples.

For random sampling, the samples were randomly drawn into smaller pools which were
named subnet equivalents denoted as /e x, where x is the name of the subnet . These
subnet equivalents equate the sizes of /25, /26, /27 /28, /29 and /30 subnets which
contain 128, 64 32, 16, 8 and 4 DSTIP addresses, respectively.
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Table 4.5: Random Sampling Subnet Equivalents

Subnet Equivalent Name Sample Draw Size

/e 25 128
/e 26 64
/e 27 32
/e 28 16
/e 29 8
/e 30 4

Table 4.5 shows the proportions of each of the subnet equivalent samples. These,
throughout this report, will be referred to as subnet equivalents because the size of the
samples is equivalent to that of the aforementioned subnets. This is to say that since a
/27 subnet is expected to have 32 DSTIP addresses, then to come up with a /e27 subnet
equivalent dataset, 10 random draws were made from the /24 IPv4 addresses, where each
draw contained 32 unique DSTIP addresses that were randomly sampled. 10 random
draws per subnet size were made to create one subnet equivalent sample to ensure proper
representation of the random sample. Thus an average of the 10 samples at each given
data point within the sample were averaged to form one synthetic sample from which com-
putations were made. Packets and SRCIP addresses are never in fractions or decimals.
As such, the decimals from the averages were rounded off to whole numbers. This process
was repeated for each subnet equivalent. Each subnet equivalent formulated contained,
the date, source port, destination port, SRCIP, and DSTIP for those randomly sampled
DSTIP addresses.

Note that the random IP addresses drawn were taken from the DSTIP addresses. For
each DSTIP address sampled, the study looked at how many SRCIP addresses had been
received within a given observation window. There was never a point where a drawn
DSTIP address did not contain SRCIP addresses as the script validated this. This is
to say that if a sample contained 16 DSTIP addresses, all 16 DSTIP addresses received
traffic that contained SRCIP addresses.

For comparability purposes, each subnet equivalent dataset was normalised using an ac-
tual subnet size that matches with the subnet equivalent. For instance, to compare /24
IPv4 dataset (which contains 256 unique DSTIP addresses) with a /e27 subnet equiv-
alent dataset (which contains 32 randomly samples destination hosts), one would need
to divide the traffic contained in the destination hosts by their respective subnet sizes.
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This also ensured that calculations are done based on average observations per unique
DSTIP address. This applied to all subnet equivalents used in this study. This random
sampling approach to analysing network traffic is significant because future use of IBR
collection methods is likely to be limited to smaller IP address pools, which may not be
contiguous. Note that the use of the word subnet equivalent is because the number of
DSTIP addresses contained in each of the sample draws its equivalent to the number of
DSTIP addresses contained in an actual subnet of in IPv4 network. Note that random
sample draws are not contiguous.

4.1.3 Data Processing

Pre-processing of the raw pcap data was performed using a combination of standard UNIX
text processing tools and a series of Python scripts that were used to pre-process the pcap
data and convert it to a .csv file format. The .csv format made the data readable and
easier to work with when analysing, be it for statistical or visual purposes. All scripts
related to data processing have been added to Appendix D. As explained in Section
4.1.1, TCP and UDP are the primary focus because they contributed in excess of 95% of
the total traffic and are commonly used. The variables of interest for this research study
were SRCIP addresses, DSTIP addresses, DPORTs and date of packet transmission. The
date used the 24 hour binning. The date represents the day in which the data was collected
and the 24 hour binning indicates the time stamp of each packet received.

SRCIP addresses were of interest because they helped to identify the distribution of traffic
based on the area of origin. This would help in modelling the data as later on the study
focused on the unique sources which give a more accurate distribution of traffic by source
IP address. DSTIP addresses were selected because they are the ones the study had
control over. More importantly, the key research question is to identify how many of
the destination IP addresses one needs in order to collect data that offers a reasonable
representation of the data collected in the baseline data. Destination ports were selected
to identify which ports were frequently associated with high traffic. They were also used in
modelling the problem at hand. The date of collection was selected because this enabled
the researchers to identify the variation of traffic over time. In addition to this, it helps
to run a comparative analysis among the different telescopes.

Having transformed the data format, the next step was to split the data into different
protocols. For this study, more attention was given to TCP and UDP. This split made it
easier to isolate traffic and thus add more accuracy to the results and computations made
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from it. Since the overall objective was to identify the variations that happen between
the baseline IBR dataset and its subnet equivalent, the data was then sampled using
sequential and random sampling. This has been explained in detail in Section 4.1.2.

To check the number of SRCIP addresses received per day, 31 lists were created, each
representing a day of the month under study. The use of a list ensured that if a unique
SRCIP address appeared multiple times, its frequency would be considered unlike the
use of sets that only focus on unique occurrences. The count (number of occurrences
in a sample) for each SRCIP address was recorded and its output was saved to a file
that contained days and frequency of SRCIP addresses being received by the DSTIP
addresses. The frequency is what constituted the count of packets. More details on this
are found in Chapter 6 where both samples are applied to mathematical models to see
their performance.

4.2 Descriptive Statistics for IBR Data

This section of the chapter provides more insight into the nature of the data that was used.
The section is split into three subsections where Section 4.2.1 explains the descriptive
character of unique SRCIP addresses. Section 4.2.2 focuses on the descriptive statistics
on network ports using packets that each port registered as a key element. Lastly, Section
4.2.3 focuses on the attributes of unique DSTIP addresses by focusing on the packet
distribution from the unique SRCIP addresses.

4.2.1 Source IP addresses

Data is presented to show the breakdown of unique SRCIP addresses that were prevalent in
all the datasets used. The tables in this subsection show the top 20 SRCIP addresses that
sent more packets than other SRCIP addresses within the time frame of data collection.
The SRCIP addresses in the tables are split based on the protocol that they used to
transmit the packets to the DSTIP addresses. TCP and UDP are the two protocols
that this study focused on, thus the tables will present SRCIP addresses for each month
based on the protocol used. Tables 4.7 - 4.9 shows top 20 SRCIP addresses ranked
based on the amount of TCP packets (traffic) they transmitted while Tables 4.10 - 4.12
shows top 20 SRCIP addresses ranked based on the amount of UDP packets (traffic) they
transmitted. These SRCIP addresses were present during the period of data collection
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for the 18 datasets. Of the 18 datasets, nine were TCP datasets while the other half were
UDP datasets.

Each of the Tables 4.7 - 4.12 shows seven columns in the following order: Rank which
shows the position of the SRCIP in the order of top senders of traffic. 146/8 is the next
column which shows SRCIP addresses that were collected by 146/8 network telescope.
155/8 column shows SRCIP addresses that were collected by 155/8 network telescope.
196-A/8 column shows SRCIP addresses that were collected by 196-A/8 network tele-
scope. Each % column shows the proportion of traffic sent by each of the top SRCIP
addresses shown in the tables. Each table has footnotes that show the total amount
of traffic collected by each network telescope in a given month. This helps to put the
proportions within context. Each table in this section also shows bold SRCIP addresses
representing SRCIP addresses that are common in all three network telescopes for the
given month. Detailed tables that show the actual number of packets by each of the
SRCIP addresses can be found in Appendix A.

Table 4.6 shows a summary table of the % composition of the total sum of top 20
SRCIP. This is for both TCP and UDP datasets. The UDP datasets show that their
top 20 SRCIP addresses received more traffic than the TCP datasets. Among the TCP
datasets, February shows that the top 20 SRCIP received more traffic than any other
month. The total sum of the top 20 SRCIP % composition were computed from Tables
4.7 - 4.12.

Table 4.6: % Sum of Top 20 SRCIP per Protocol

Dataset Name Total TCP % Total UDP %

146/8-012021 23.57 36.55
155/8-012021 21.10 32.76

196-A/8-012021 15.22 54.15
146/8-022021 37.43 39.66
155/8-022021 34.14 37.30

196-A/8-022021 31.30 57.74
146/8-032021 24.26 36.12
155/8-032021 22.10 36.65

196-A/8-032021 16.53 76.07
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Table 4.7: Top 20 SRCIP Based on Volume of TCP Traffic [Jan 2021]

Rank 146/81 % 155/82 % 196-A/83 %

1 92.63.197.97 4.26 92.63.197.97 3.64 92.63.197.97 3.07
2 185.175.93.24 3.65 185.175.93.24 3.26 185.175.93.24 2.75
3 79.124.62.74 2.38 79.124.62.74 2.03 79.124.62.74 1.72
4 194.26.25.125 2.27 194.26.25.125 1.94 194.26.25.125 1.64
5 194.147.140.41 1.29 194.147.140.41 1.12 64.95.96.217 0.62
6 194.147.140.42 0.88 178.33.221.97 0.76 194.147.140.8 0.60
7 194.147.140.6 0.84 194.147.140.42 0.75 193.27.229.47 0.54
8 45.129.33.128 0.78 194.147.140.6 0.71 103.145.13.58 0.53
9 193.27.229.47 0.74 45.129.33.128 0.67 74.106.249.155 0.52
10 74.106.249.155 0.73 205.220.231.26 0.67 45.146.164.211 0.46
11 103.145.13.58 0.71 193.27.229.47 0.63 103.195.100.208 0.46
12 45.129.33.47 0.71 74.106.249.155 0.63 141.98.10.138 0.44
13 103.195.100.208 0.64 45.129.33.47 0.59 194.26.25.13 0.32
14 45.146.164.211 0.63 45.146.164.211 0.55 89.248.160.178 0.32
15 141.98.10.138 0.61 103.195.100.208 0.55 45.146.165.171 0.31
16 122.228.19.79 0.57 141.98.10.138 0.52 93.174.93.123 0.29
17 64.95.96.217 0.55 122.228.19.79 0.49 103.145.13.43 0.28
18 45.146.165.171 0.44 64.95.96.217 0.47 205.220.231.26 0.27
19 89.248.160.178 0.44 103.145.13.58 0.44 161.189.114.127 0.27
20 194.26.25.13 0.43 205.220.231.25 0.43 38.130.221.107 0.26

1 Total TCP traffic for 146/8-012021 was 30,350,954 packets
2 Total TCP traffic for 155/8-012021 was 35,497,782 packets
3 Total TCP traffic for 196-A/8-012021 was 42,043,059 packets
* SRCIPs in bold were present across all Datasets for January

Table 4.7 shows top SRCIP addresses that were registered by all three network telescopes
in January 2021. SRCIP addresses 194.147.140.41 and 194.147.140.42 were persistent
for all the three months but only present in 146/8 and 155/8 network telescopes for
February and March. SRCIP 45.146.164.211 was present in all three network telescopes
throughout the observation period. From this table, only 122.228.19.79 was found in the
top 20 for both TCP and UDP traffic, however, it was not identified in network telescope
196-A/8. Going Geolocation2 on the dominant SRCIP shows that most of the top five
are being used in Russia and in Bulgaria. For instance, 92.63.197.97 is being used by
LLC Digital Network in Russia, 185.175.93.24 is being used in Russia by Chistyakov
Mihail Viktorovich. On the other hand, 79.124.62.74 is being used by Dm Auto Eood
in Bulgaria. All these were present in all network telescopes.

2https://www.findip-address.com
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Table 4.8: Top 20 SRCIP Address Based on Volume of TCP Traffic [Feb 2021]

Rank 146/81 % 155/82 % 196-A/83 %

1 89.248.165.101 17.50 89.248.165.101 15.72 89.248.165.101 15.71
2 79.124.62.74 5.73 79.124.62.74 5.16 79.124.62.74 5.16
3 79.124.62.234 4.13 79.124.62.234 3.73 79.124.62.234 3.73
4 194.147.140.41 1.24 194.147.140.41 1.13 89.190.156.53 1.42
5 89.190.156.53 0.94 89.190.156.53 0.84 45.79.121.175 0.93
6 194.147.140.42 0.75 194.147.140.42 0.69 74.106.249.155 0.50
7 194.147.140.68 0.66 205.220.231.26 0.56 45.146.164.211 0.49
8 194.147.140.66 0.61 178.33.221.97 0.56 89.190.156.52 0.44
9 194.147.140.70 0.56 194.147.140.68 0.55 89.248.160.178 0.35
10 74.106.249.155 0.55 194.147.140.66 0.54 94.232.46.244 0.35
11 194.147.140.40 0.55 74.106.249.155 0.50 89.248.165.104 0.31
12 45.146.164.211 0.54 194.147.140.70 0.49 93.174.93.123 0.31
13 194.147.140.69 0.51 194.147.140.40 0.49 103.145.13.58 0.29
14 194.147.140.26 0.50 45.146.164.211 0.49 89.248.165.53 0.29
15 122.228.19.79 0.49 194.147.140.69 0.49 205.220.231.26 0.28
16 89.190.156.52 0.49 194.147.140.26 0.45 89.248.165.51 0.28
17 194.147.140.67 0.47 194.147.140.96 0.45 194.61.25.194 0.27
18 194.147.140.96 0.44 122.228.19.79 0.45 103.145.13.43 0.27
19 89.248.160.178 0.39 89.190.156.52 0.45 89.248.165.93 0.26
20 94.232.46.244 0.38 194.147.140.67 0.40 45.125.65.105 0.25

1 Total TCP traffic for 146/8-022021 was 32,460,888 packets
2 Total TCP traffic for 155/8-022021 was 36,031,250 packets
3 Total TCP traffic for 196-A/8-022021 was 36,046,727 packets
* SRCIPs in bold were present across all Datasets for February

Table 4.8 shows top SRCIP addresses that were registered by all three network telescopes
in February 2021. The top 3 ports in Table 4.8 transmitted at least 20% of the overall
TCP traffic in the respective network telescopes. SRCIP address 89.248.165.101 being
used by IP Volume inc in the United Kingdom transmitted the highest traffic in February
in all three network telescopes. This is followed by 79.124.62.74 and 79.124.62.234
being used by Dm Auto Eood in Bulgaria. 79.124.62.74 was also observed in January.
89.190.156.53 which is associated with Alsycon B.V in the Netherlands was observed for
both TCP and UDP traffic in the months of February and March. The number of identical
SRCIP addresses among the network telescopes declined to seven from 11 observed in
January. Just as in January, 122.228.19.79 (used by China Telecom Wenzhou) was
observed in both TCP and UDP traffic in February. It is one of the persistent SRCIP
observed in all datasets belonging to 146/8 and 155/8 network telescope.
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Table 4.9: Top 20 SRCIP Based on Volume of TCP Traffic [Mar 2021]

Rank 146/81 % 155/82 % 196-A/83 %

1 194.147.140.122 3.87 194.147.140.122 3.46 45.93.201.188 3.39
2 194.147.140.126 3.86 194.147.140.126 3.45 82.102.137.130 2.23
3 45.93.201.188 3.40 45.93.201.188 3.03 193.27.229.207 1.10
4 82.102.137.130 2.27 82.102.137.130 2.03 193.27.229.47 1.03
5 194.147.140.41 1.40 194.147.140.41 1.25 89.190.156.52 0.83
6 193.27.229.207 0.94 193.27.229.207 0.97 69.25.114.212 0.81
7 193.27.229.47 0.90 193.27.229.47 0.92 45.155.205.155 0.69
8 89.190.156.52 0.83 89.190.156.52 0.74 89.190.156.53 0.61
9 69.25.114.212 0.81 69.25.114.212 0.73 72.251.228.103 0.58
10 194.147.140.42 0.66 45.155.205.155 0.62 89.248.165.101 0.58
11 194.147.140.26 0.63 194.147.140.42 0.59 45.146.164.211 0.57
12 45.155.205.155 0.61 194.147.140.26 0.57 89.248.165.203 0.57
13 89.248.165.101 0.60 89.248.165.101 0.52 45.146.165.24 0.53
14 89.190.156.53 0.52 45.146.164.211 0.51 103.99.2.190 0.52
15 103.99.2.190 0.52 103.99.2.190 0.47 185.188.182.105 0.46
16 45.146.165.24 0.51 45.146.165.24 0.47 94.232.46.244 0.44
17 45.146.164.211 0.51 89.190.156.53 0.47 41.57.124.37 0.43
18 185.156.73.67 0.48 194.147.140.29 0.45 45.146.164.170 0.39
19 194.147.140.29 0.47 185.156.73.67 0.43 45.125.65.105 0.39
20 194.147.140.40 0.47 194.147.140.40 0.42 89.248.165.104 0.38

1 Total TCP traffic for 146/8-032021 was 33,722,026 packets
2 Total TCP traffic for 155/8-032021 was 37,753,171 packets
3 Total TCP traffic for 196-A/8-032021 was 33,679,719 packets
* SRCIPs in bold were present across all Datasets for March

Table 4.9 shows top SRCIP addresses that were registered by all three network telescopes
in March 2021. In March, the number of identical SRCIP addresses was the highest.
However, the top three is not uniform when the observation is made in the months of
January and February. The top SRCIP for 196-A/8 network telescope is different from
the other two. Both 194.147.140.122 and 194.147.140.122 are associated with Leading
Mechanical Industry PJS in Mongolia while 45.93.201.188 and 193.27.229.207 are
associated with OOO Network of data-centers Selectel in Moscow, Russia. A persistent
SRCIP 89.248.165.101 (belonging to IP Volume inc, United Kingdom) is observed in
March as well. There is an introduction of new SRCIP in the top five and new countries.
For instance, there is 82.102.137.130 which is associated with Partner Communications
in Israel, and 194.147.140.41 (IP Volume inc), another persistent network, this time, in
Iran.
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Table 4.10: Top 20 SRCIP Based on Volume of UDP Traffic [Jan 2021]

Rank 146/81 % 155/82 % 196-A/83 %

1 146.88.240.4 8.01 146.88.240.4 7.63 196.216.37.82 17.74
2 95.214.52.175 4.34 95.214.52.175 4.17 77.247.108.45 7.74
3 95.214.53.145 3.32 95.214.53.145 3.17 77.247.108.35 7.47
4 69.162.117.142 2.41 69.162.117.142 2.24 146.88.240.4 4.99
5 95.214.54.95 2.18 95.214.54.95 2.09 95.214.52.175 2.92
6 193.29.14.109 1.89 104.243.40.37 1.54 95.214.53.145 2.07
7 104.243.40.37 1.62 185.94.111.1 1.41 95.214.54.95 1.44
8 80.94.93.24 1.53 109.248.203.69 1.36 69.162.117.142 1.42
9 185.94.111.1 1.48 95.214.54.161 1.27 80.94.93.24 1.05
10 95.214.54.161 1.35 45.125.65.52 1.22 104.243.40.37 1.01
11 45.125.65.52 1.28 193.29.14.109 1.10 185.94.111.1 0.92
12 80.94.93.16 0.86 80.94.93.16 0.81 45.125.65.52 0.90
13 80.82.65.90 0.85 80.82.65.90 0.81 109.248.203.69 0.89
14 213.59.4.26 0.84 80.94.93.10 0.80 95.214.54.161 0.86
15 80.94.93.10 0.83 72.251.228.101 0.69 23.148.145.30 0.70
16 83.97.20.25 0.81 104.152.52.31 0.68 193.29.14.109 0.69
17 193.29.14.125 0.78 104.152.52.23 0.68 80.94.93.10 0.57
18 72.251.228.101 0.73 122.228.19.79 0.67 196.192.178.26 0.55
19 122.228.19.79 0.73 147.203.255.20 0.58 80.82.65.90 0.53
20 104.152.52.26 0.71 83.97.20.25 0.51 80.94.93.16 0.52

1 Total UDP traffic for 146/8-01202 was 3,594,676 packets
2 Total UDP traffic for 155/8-012021 was 3,769,639 packets
3 Total UDP traffic for 196-A/8-012021 was 5,764,771 packets
* SRCIPs in bold were present across all Datasets for January

Table 4.10 shows top SRCIP addresses that were registered by all three network tele-
scopes for UDP traffic observed in January. Although the total volume declined when
dealing with UDP packets, the proportion of top SRCIP addresses contributing to the
overall traffic increased in the three months collection period. A change in protocol
came along with a lot of new SRCIP addresses. The top SRCIPs in January is dom-
inated by persistent networks than SRCIP IP addresses. For instance, 95.214.52.175
and 95.214.53.145 associated with Meverywhere sp. z o.o in Poland. 77.247.108.45
and 77.247.108.35 is ABC Consultancy in Belize. 146.88.240.4 (associated with Arbor
Networks) is the highest SRCIP address with most packets in UDP traffic, being present
in all UDP datasets. There was also 193.29.14.109 (associated with Bunea TELECOM
SRL in Romania) present in January and February for all network telescopes.
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Table 4.11: Top 20 SRCIP Address Based on Volume of UDP Traffic [Feb 2021]

Rank 146/81 % 155/82 % 196-A/83 %

1 146.88.240.4 7.38 146.88.240.4 7.09 196.216.37.82 33.32
2 77.247.108.175 7.16 77.247.108.175 6.84 146.88.240.4 4.57
3 77.247.108.74 6.72 77.247.108.74 6.49 77.247.108.74 4.32
4 77.247.108.58 3.39 77.247.108.58 3.29 77.247.108.175 4.23
5 103.145.13.60 1.69 213.59.4.26 1.58 77.247.108.58 2.05
6 185.94.111.1 1.36 185.94.111.1 1.31 103.145.13.60 1.05
7 103.145.13.55 1.27 103.145.13.55 1.22 185.94.111.1 0.85
8 193.29.14.109 1.21 156.96.156.138 1.14 103.145.13.55 0.79
9 156.96.156.138 1.19 45.125.65.52 0.91 156.96.156.138 0.74
10 103.145.13.59 0.95 80.82.65.90 0.76 45.125.65.52 0.63
11 45.125.65.52 0.95 103.145.13.18 0.74 38.91.100.237 0.60
12 80.82.65.90 0.80 193.29.14.109 0.72 103.145.13.59 0.59
13 103.145.13.18 0.77 72.251.228.101 0.70 217.182.199.129 0.56
14 72.251.228.101 0.73 104.152.52.32 0.69 193.46.255.20 0.52
15 104.152.52.28 0.72 104.152.52.24 0.69 95.214.53.145 0.52
16 104.152.52.18 0.72 122.228.19.79 0.66 80.82.65.90 0.50
17 122.228.19.79 0.70 193.29.14.112 0.63 103.145.13.18 0.48
18 193.29.14.127 0.66 193.107.216.17 0.62 72.251.228.101 0.45
19 193.29.14.112 0.66 89.40.70.237 0.61 193.29.14.109 0.45
20 89.40.70.237 0.63 217.182.199.129 0.61 104.152.52.34 0.45

1 Total UDP traffic for 146/8-022021 was 3,578,212 packets
2 Total UDP traffic for 155/8-022021 was 3,721,754 packets
3 Total UDP traffic for 196-A/8-022021 was 5,767,477 packets
* SRCIPs in bold were present across all Datasets for February

In Table 4.11, there are five unique SRCIP addresses that are not appearing for the
first time in the datasets i.e. persistent networks and SRCIP addresses. For instance
185.94.111.1 (associated with HLL LLC) in Russia was present in all telescopes in Jan-
uary and February but not present in 196-A/8 for March, 45.125.65.52 (associated with
Tele Asia Limited in Hong Kong) was present for January and February. 80.82.65.90 (as-
sociated with Novogara LTD), with geolocation in Seychelles, was present in January and
February as well. 72.251.228.101, associated with Voxel Hosting, located in the USA
was present in all months, but not in all network telescopes i.e. it was not present for 196-
A/8 in January and March. However, 146.88.240.4 (associated with Arbor Networks) is
still the highest SRCIP address with most packets in UDP traffic in 146/8 and 155/8
network telescopes. For 196-A/8, 196.216.37.82 which belongs to Paratus-Telecom in
Namibia recorded the highest proportion.
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Table 4.12: Top 20 SRCIP Based on Volume of UDP Traffic [Mar 2021]

Rank 146/81 % 155/82 % 196-A/83 %

1 146.88.240.4 7.90 103.145.13.75 6.40 107.148.161.86 27.15
2 103.145.13.131 3.39 103.145.13.74 5.90 196.216.37.82 14.85
3 103.145.13.74 2.54 146.88.240.4 5.81 103.248.20.30 7.04
4 193.46.255.40 2.47 103.145.13.131 2.49 23.27.103.158 5.58
5 103.145.13.75 2.14 193.46.255.40 1.92 103.248.20.21 2.71
6 103.145.13.167 2.03 193.107.216.17 1.46 23.27.103.157 2.65
7 89.40.70.51 1.84 103.145.13.167 1.44 77.247.108.45 2.39
8 193.107.216.17 1.83 89.40.70.51 1.35 103.145.13.75 2.14
9 103.145.13.78 1.77 103.145.13.147 1.33 77.247.108.35 2.05
10 185.94.111.1 1.35 45.143.221.110 1.30 103.145.13.74 1.99
11 193.29.14.125 1.15 185.94.111.1 0.99 146.88.240.4 1.86
12 89.190.156.53 1.12 193.29.14.125 0.85 45.121.107.128 1.41
13 103.145.13.69 1.08 89.190.156.53 0.81 103.145.13.130 0.80
14 92.204.135.183 0.93 92.204.135.183 0.69 193.46.255.40 0.62
15 209.222.98.168 0.83 103.145.13.78 0.62 45.143.221.110 0.55
16 81.177.143.31 0.80 209.222.98.168 0.61 193.107.216.17 0.51
17 89.248.165.164 0.77 89.248.165.164 0.56 103.145.13.167 0.48
18 103.145.13.77 0.77 72.251.228.101 0.51 89.40.70.51 0.44
19 193.46.254.182 0.71 104.152.52.30 0.50 103.145.13.147 0.43
20 72.251.228.101 0.70 104.152.52.26 0.50 103.145.13.78 0.42

1 Total UDP traffic for 146/8-032021 was 3,743,119 packets
2 Total UDP traffic for 155/8-032021 was 5,088,935 packets
3 Total UDP traffic for 196-A/8-032021 was 15,824,966 packets
* SRCIPs in bold were present across all Datasets for March

Table 4.12 shows top SRCIP addresses that were registered by all three network tele-
scopes for UDP traffic observed in March. 107.148.161.86 associated with Cnservers
LLC in the USA, transmitted more UDP packets than any other SRCIP address (27.15%).
Other than this, note also that in all UDP datasets, 196-A/8 recorded more packets than
any other dataset, with the highest being recorded in March. This is observed by looking
at the total traffic received by 196-A/8, shown in Table 4.12. Note also that the top
seven unique SRCIP addresses registered in 196-A/8 network telescope are unique to
it and not present in 146/8 or 155/8. This, in part, explains why there is a huge gap
between the traffic recorded in 196-A/8 and that observed in 146/8 and 155/8 network
telescopes. The top seven SRCIP addresses registered in 196-A/8 are unique to 196-
A/8, each of which contributed more traffic than the top SRCIP addresses 146.88.240.4
and 103.145.13.75 (another set of persistent networks already looked at from Arbor
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Networks and ABC Consultancy). Actual number of packets for this table are shown
in Appendix A, in Table A.6. 196.216.37.8, another persistent SRCIP belonging to
Paratus-Telecom in Namibia. It was first observed in February for UDP traffic.

While there were persistent unique SRCIP addresses, the study observed that there were
also persistent networks i.e. those networks that probed the network telescopes more
than once. For instance, network 194.26.25.X appeared twice in January alone. Like
other unique SRCIPs, the individual SRCIP addresses in this network sent traffic of
similar magnitude. The most dominant of all persistent networks is 194.147.140.X
which appeared at least twenty times within the three months observation period. The
count is ’at least twenty times’ because the study could not print out all 500,00 plus
unique SRCIP addresses that were observed in each dataset. What is known is that for
those unique SRCIP addresses that contributed the most, this network sent most of the
TCP traffic received by the three network telescopes under study. It appeared more in
February than in any other month.

Other persistent networks observed include 45.129.33.X, which was observed in January
and March, 74.106.249.X which appeared in January and March as well. There was
also 45.146.164.X which appeared in all three months but using a single IP address each
time it was observed in all network telescopes. Just after this persistent network, there
was 45.146.165.X, appearing twice again in January and March but using different IP
addresses. The closeness and the period with which 45.146.164.X and 45.146.165.X
appeared makes one believe that they could belong to the same organisation.

From the top 20 SRCIP addresses presented in this section, there are a few major points
to take away. Firstly, the observation of unique SRCIPs that are persistent and appear
in more than one network telescope. The presence of the unique SRCIP addresses in all
of the network telescopes shows how similar the data collected from the three network
telescopes is. Secondly, these top SRCIP addresses sent high volume of internet traffic
throughout the observation period and it is one of the main reasons why traffic patterns
between the network telescopes are similar. These top 20 SRCIP addresses broadcasted
their traffic in each of the network telescopes. There is also the observation that shows
unique SRCIP addresses that appear in every month and send traffic both for TCP and
UDP traffic.

Looking at the total sum of traffic contributed by the top 20 SRCIP as shown in Table
4.6, one would note that there is still a lot of traffic unaccounted. This is said because
the overall % sum is below 40%. This is with the exception of 196-A/8 UDP traffic.
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However, if the traffic sent by the top 20 SRCIP addresses is anything to go by, then it
can be inferred that this behaviour of broadcasting traffic to all unique DSTIP addresses
continues with all the other SRCIP addresses. There is a graphical representation of traffic
distribution shown in Section 4.2.3 that supports this. The knowledge collected from
the geolocation of the unique SRCIP addresses also helps to understand where most of the
probes on the network telescopes are coming from. This is working with the assumption
that the traffic is originating from the identified SRCIPs. More specific details have been
explained against each table to show the origin of these top SRCIPs.

4.2.2 Port Breakdown for TCP and UDP Traffic Dataset

Having looked at traffic distribution based on unique SRCIP addresses, the study focused
on another important element of packet transmission, ports. Each SRCIP had to use at
least one of the opened ports on the network telescopes in order to transmit their packets,
be it TCP or UDP. Tables 4.14 - 4.19 gives a summary breakdown of the destination
ports (DPORT) that received a lot of traffic from the SRCIP addresses based on the two
protocols under study (TCP and UDP). The labelling of the columns in the tables to
represent specific network telescopes is the same as that shown in Section 4.2.1 except
this time, the column contains DPORT numbers that registered more traffic and the
proportion of the traffic observed. Table 4.13 shows the total percentage sum of the top
20 DPORTs. Tables containing the actual number of packets received by each DPORT
with their proportions can be found in Appendix B.

Table 4.13: % Sum of Top 20 DPORT per Protocol

Dataset Name Total TCP % Total UDP %

146/8-012021 23.40 47.75
155/8-012021 32.17 44.86

196-A/8-012021 47.52 50.70
146/8-022021 18.73 48.14
155/8-022021 25.81 45.04

196-A/8-022021 32.57 65.15
146/8-032021 23.37 52.43
155/8-032021 31.52 39.33

196-A/8-032021 39.80 76.20
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Table 4.14: Top 20 DPORT Based on Volume of TCP Traffic [Jan 2021]

Rank 146/81 % 155/82 % 196-A/83 %

1 23 6.95 445 10.01 37215 19.09
2 22 2.63 23 6.04 445 9.62
3 80 2.09 1433 2.56 23 5.17
4 445 1.78 22 2.06 22 2.46
5 443 1.32 80 1.72 1433 2.38
6 8080 1.24 8080 1.07 80 1.45
7 3389 1.14 443 1.04 8080 1.12
8 81 1.05 3389 1.00 443 0.92
9 6379 0.79 81 0.91 3389 0.81
10 5555 0.69 6379 0.74 81 0.76
11 5038 0.53 10530 0.60 6379 0.58
12 8545 0.50 33529 0.60 5555 0.49
13 1433 0.47 12111 0.60 34694 0.47
14 50802 0.42 61380 0.59 5038 0.40
15 8081 0.40 5555 0.58 8545 0.36
16 8443 0.36 16979 0.56 50802 0.31
17 11211 0.36 8545 0.43 8728 0.30
18 2323 0.35 5038 0.40 8081 0.30
19 3306 0.35 8081 0.35 8443 0.27
20 139 0.34 11211 0.31 11211 0.26

1 Total TCP traffic for 146/8-012021 was 30,350,954 packets
2 Total TCP traffic for 155/8-012021 was 35,497,782 packets
3 Total TCP traffic for 196-A/8-012021 was 42,043,059 pack-
ets

Table 4.14 shows the top 20 DPORTs that received the most TCP traffic in the month
of January. There is no single DPORT that was dominant in all three network telescopes.
Of more interest is port 37215/TCP which received more traffic than any other port.
This is confirmed by looking at the total traffic in the 196-A/8 network telescope. Port
37215/TCP is used by Huawei Technologies to run Huawei HG532 routers. According
to CVE-2017-172153, Huawei HG532 with some customized versions has a remote code
execution vulnerability. An authenticated attacker could send malicious packets to port
37215/TCP to launch attacks. A successful exploit could lead to the remote execution of
arbitrary code. According to Port Attack Activity4, Port 37215/TCP was scanned the
most in January, thus this table confirms such a scan activity. More details on services
running on the top DPORTs found in this study is in Appendix C

3https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17215
4https://isc.sans.edu/port.html?port=37215
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Table 4.15: Top 20 DPORT Based on Volume of TCP Traffic [Feb 2021]

Rank 146/81 % 155/82 % 196-A/83 %

1 23 5.62 445 8.50 445 9.72
2 22 1.82 23 5.15 23 5.05
3 80 1.57 1433 2.17 37215 4.69
4 445 1.34 22 1.52 1433 2.26
5 8080 0.98 80 1.39 22 2.12
6 3389 0.96 8080 0.90 80 1.41
7 5555 0.96 3389 0.87 8080 1.12
8 443 0.90 443 0.81 3389 0.86
9 6379 0.65 6379 0.67 443 0.81
10 81 0.60 5555 0.65 5555 0.70
11 5038 0.47 81 0.54 6379 0.60
12 8081 0.39 8081 0.35 81 0.54
13 1433 0.35 8888 0.30 5038 0.43
14 3306 0.33 3306 0.30 8291 0.38
15 8888 0.33 11211 0.29 8728 0.36
16 11211 0.32 12111 0.28 8081 0.36
17 26 0.30 61380 0.28 8888 0.30
18 2323 0.29 10530 0.28 3306 0.29
19 8443 0.28 16979 0.28 11211 0.29
20 50802 0.27 33529 0.28 34694 0.28

1 Total TCP traffic for 146/8-022021 was 32,460,888 packets
2 Total TCP traffic for 155/8-022021 was 36,031,250 packets
3 Total TCP traffic for 196-A/8-022021 was 36,046,727 pkts

Table 4.15 shows the top 20 DPORTs that received the most TCP traffic in the month of
February. The order of the top three recipients in 196-A/8 network telescope has changed
while for 146/8 and 155/8 telescopes remained the same. The change in position of
Port 37215/TCP to third conforms to the decline in probes for this port5 which had a
huge spike in January alone. The decline in the volume of traffic for Port 37215/TCP
coincides with the huge drop of total traffic for 196-A/8 telescope (see the totals). This
massive drop in total traffic from 42,043,059 in January to 36,046,727 in February is
not reflected in 146/8 and 155/8 telescopes. It was expected that Port 23/TCP (Telnet,
used for accessing systems remotely) and port 445/TCP (used by Microsoft Directory
Services for Active Directory (AD) and for the Server Message Block (SMB) protocol)
would register more traffic because of the nature of the services they run. Overall, new
ports have emerged into the top 20 while others have dropped rank, e.g Port 139/TCP.

5https://isc.sans.edu/port.html?port=37215
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Table 4.16: Top 20 DPORT Based on Volume of TCP Traffic [Mar 2021]

Rank 146/81 % 155/82 % 196-A/83 %

1 23 7.10 445 10.35 445 13.27
2 22 2.22 23 6.32 23 6.89
3 80 1.77 1433 2.57 1433 2.95
4 445 1.59 22 1.87 22 2.69
5 6379 1.44 6379 1.60 37215 2.08
6 5555 1.40 80 1.56 80 1.79
7 443 1.19 443 1.05 6379 1.50
8 3389 1.09 3389 0.98 8080 1.27
9 8080 1.02 8080 0.90 443 1.21
10 81 0.76 5555 0.75 3389 1.05
11 26 0.49 81 0.67 5555 0.81
12 1433 0.42 26 0.43 81 0.75
13 8291 0.42 8081 0.35 8291 0.63
14 8081 0.39 8443 0.33 8728 0.52
15 8443 0.37 8291 0.32 26 0.48
16 5038 0.36 5900 0.32 2375 0.42
17 5900 0.35 2323 0.31 8081 0.40
18 2323 0.34 8545 0.30 9090 0.37
19 8545 0.34 8000 0.28 8443 0.36
20 8000 0.31 9999 0.26 5038 0.36

1 Total TCP traffic for 146/8-032021 was 33,722,026 packets
2 Total TCP traffic for 155/8-032021 was 37,753,171 packets
3 Total TCP traffic for 196-A/8-032021 was 33,679,719 pkts

Table 4.16 shows the top 20 DPORTs that received the most TCP traffic in March.
A port of interest in this table is 6379/TCP which is used to run Remote Dictionary
Server (redis6). Port 6379/TCP moved up the ranks in March in all network telescopes.
Usually, this port was found around positions 9, 10, or 11 in January and February.
However, in March, it was found in positions 5 (in 146/8 and 155/8) and 7 (in 196-
A/8). According to Speed guide.net7, Port 6379/TCP received more daily hits ranging
between 2,500 - 3,600 per day than any other month in 2021. After March the numbers
lowered to below 2,500 hits per day. It is therefore no surprise that this rise in daily hits
is also detected in all the network telescopes under study, showing how the data in the
network telescopes is in sync with activities occurring in the allocated address blocks.
Port 37215/TCP has further dropped on the rank and is only present in 196-A/8.

6https://redis.io
7https://www.speedguide.net/port.php?port=6379
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Table 4.17: Top 20 DPORT Based on Volume of UDP Traffic [Jan 2021]

Rank 146/81 % 155/82 % 196-A/82 %

1 5060 14.35 5060 12.58 53 20.08
2 123 6.07 123 5.55 5060 10.37
3 53 3.79 53 3.65 123 4.75
4 1900 3.26 1900 3.15 161 2.33
5 161 2.87 161 2.74 1900 2.03
6 389 2.15 389 2.04 389 1.57
7 1434 1.62 11211 1.65 1434 1.01
8 11211 1.50 1434 1.54 11211 0.93
9 5353 1.39 5353 1.34 137 0.89
10 137 1.34 137 1.27 5353 0.86
11 5683 1.22 5683 1.17 5683 0.77
12 111 1.11 111 1.05 111 0.70
13 1194 1.07 1194 1.03 1194 0.67
14 6881 1.03 6881 0.97 6881 0.64
15 3283 0.88 33434 0.92 19 0.60
16 19 0.88 3283 0.87 3283 0.55
17 6536 0.84 33435 0.86 5070 0.54
18 5070 0.82 33441 0.83 5632 0.49
19 5632 0.79 19 0.83 5351 0.48
20 5351 0.77 33440 0.82 1027 0.44

1 Total UDP traffic for 146/8-012021 was 3,594,676 packets
2 Total UDP traffic for 155/8-012021 was 3,769,639 packets
3 Total UDP traffic for 196-A/8-012021 was 5,764,771 packets

Table 4.17 shows the top 20 DPORTs that received the most UDP traffic in the month
of January. With the change in protocol, the study observed a new set of ports that
received more traffic in correspondence to UDP traffic. Ports 5060/UDP, 53/UDP
and 123/UDP sent most of the traffic in March, at least 20% of the total UDP traffic
was transmitted via these ports in each network telescope. Port 5060/UDP is used for
Session Initiation Protocol (SIP) communication by signaling and controlling interactive
communication sessions8 while 53/UDP is used for Domain Name System9 (DNS) and
123/UDP services Network Time Protocol10 (NTP).

8https://www.speedguide.net/port.php?port=5060
9https://www.speedguide.net/port.php?port=53

10https://www.speedguide.net/port.php?port=123
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Table 4.18: Top 20 DPORT Based on Volume of UDP Traffic [Feb 2021]

Rank 146/81 % 155/82 % 196-A/83 %

1 5060 14.85 5060 13.12 53 35.64
2 123 7.46 123 6.59 5060 10.82
3 53 3.72 53 3.58 123 4.57
4 1900 3.15 1900 3.02 1900 1.97
5 389 2.72 389 2.61 161 1.83
6 161 2.46 161 2.36 389 1.56
7 1434 1.25 11211 1.26 137 0.83
8 137 1.20 1434 1.20 11211 0.82
9 11211 1.15 137 1.15 1434 0.78
10 5683 1.13 54047 1.09 5683 0.70
11 5353 1.08 5683 1.09 5353 0.67
12 5070 1.01 5353 1.05 3283 0.65
13 69 1.00 5070 0.96 5070 0.65
14 111 0.99 69 0.96 69 0.61
15 3702 0.96 111 0.95 111 0.61
16 1194 0.95 1194 0.91 1194 0.58
17 19 0.79 6576 0.81 19 0.49
18 3283 0.78 19 0.78 6881 0.47
19 6881 0.77 3283 0.78 3702 0.46
20 5632 0.72 6532 0.77 5632 0.44

1 Total UDP traffic for 146/8-022021 was 3,578,212 packets
2 Total UDP traffic for 155/8-022021 was 3,721,754 packets
3 Total UDP traffic for 196-A/8-022021 was 5,767,477 packets

Table 4.18 shows the top 20 DPORTs that received the most UDP traffic in the month of
February. As in January, Ports 5060/UDP, 53/UDP and 123/UDP are the dominant
ports as well. However, noteworthy is how the volume of traffic transmitted through these
ports (Ports 5060/UDP, 53/UDP and 123/UDP) has increased, especially in 196-
A/8 telescope with half of the total traffic in 196-A/8 telescope. Another port of interest
observed throughout the data collection period is Port 19/UDP which services Character
Generator Protocol11 (CHARGEN). It should be disabled if there is no specific need for
it, as it may be a source for potential attacks [RFC 864]. According to speedguide, Port
19/UDP was averaging 850 hits per day between January and March in networks that
are fully operational.

11https://www.speedguide.net/port.php?port=19
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Table 4.19: Top 20 DPORT Based on Volume of UDP Traffic [Mar 2021]

Rank 146/81 % 155/82 % 196-A/83 %

1 5060 16.77 5060 11.71 123 52.21
2 123 8.77 123 5.78 53 15.83
3 53 4.11 53 3.04 5060 5.09
4 389 3.73 389 2.80 389 0.92
5 1900 2.67 1900 2.09 161 0.91
6 161 2.45 161 1.81 1900 0.63
7 3702 1.40 49693 1.09 3283 0.60
8 1434 1.33 11211 0.98 137 0.33
9 137 1.26 1434 0.96 11211 0.32
10 5683 1.21 137 0.91 1434 0.31
11 5353 1.18 5683 0.90 3702 0.30
12 11211 1.08 25631 0.88 5683 0.29
13 1194 1.06 5353 0.87 5353 0.28
14 111 0.83 11551 0.84 1194 0.25
15 6881 0.82 44060 0.78 5070 0.20
16 6572 0.80 44830 0.78 111 0.19
17 19 0.78 1194 0.78 6881 0.19
18 5070 0.76 9757 0.78 19 0.19
19 3283 0.75 28447 0.78 5080 0.16
20 17 0.67 62495 0.77 5632 0.16

1 Total UDP traffic for 146/8-032021 was 3,743,119 packets
2 Total UDP traffic for 155/8-032021 was 5,088,935 packets
3 Total UDP traffic for 196-A/8-032021 was 15,824,966 packets

Table 4.19 shows the top 20 DPORTs that received the most UDP traffic in the month
of February. The ranking of the top 3 ports in 146/8 and 155/8 telescopes has not
changed. However, in 196-A/8 the ranking has changed with Port 123/UDP at the top
with over 50% of the total traffic for 196-A/8 being transmitted through it. This spike
is shown in Section 4.3 where a single day in March recorded over 7,200,000 packets.
It is no surprise that the total traffic for 196-A/8 almost tripled the amount received
in January or February. Another port that has been persistent is Port 389/UDP which
services Lightweight Directory Access Protocol12 (LDAP)

Due to the high number of unique DPORTs that registered traffic, the proportionality
of the unique DPORTs in terms of how much traffic they registered as compared to
the overall 65,535 ports was very small. This is with the exception of traffic registered

12https://www.speedguide.net/port.php?port=389
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on UDP traffic for Ports 53/UDP and 123/UDP. In subsequent chapters, the study
will show that each of the unique SRCIP IP addresses probed at least one of the open
ports. This looks insignificant, but when data sampling (sequential or random) is done,
it was observed that each sample had about 96% of the total number of unique ports
that registered traffic in that sample. Now, this becomes significant because it essentially
means that our sampling has very little negative effects on the overall sampling.

Of note is that traffic was sent to all 65,535 unique ports for TCP datasets, however, this
was not consistent in all datasets. For instance, for the month of January, none of the TCP
datasets received traffic in all 65,535 unique ports. The highest volume of TCP traffic was
observed in 155/8 telescope which had 65,518 of its unique ports registering traffic while
the lowest count of ports to have received TCP traffic was observed in 146/8 telescope
which brings its total count of unique ports to 65,502. The number of unique DPORTs
that registered started to increase in February and by March all unique destination ports
had registered traffic. The numbers were significantly lower for all UDP datasets with
the highest number of unique DPORTs coming to 17,794 for 155/8 and its lowest count
found in the same network telescope but different dataset in February.

The major take away from the top 20 is to note which of the services are targeted the most.
These ports ought to be heavily guarded with their vulnerabilities patched. The services
that match the top ports are presented in Appendix C. Some of the these ports are still
exploited even with old vulnerabilities like Port 37215/TCP. Another major take away
is to note how unusual amount of traffic in the assigned IP addresses can be picked in
the network telescope. This has been presented in Table 4.14 which is coupled with an
explanation. With network telescope scans, it is easy to identify when abnormal traffic
(indicating a threat) is registered in a network. Certain ports are expected to receive high
volume of traffic, like Port 445/TCP for example. Thus, if one notes that this order has
been disrupted, as it is in Table 4.14, it is indicative of an anomaly in traffic. If one does
not know the order in which these ports receive traffic it would be difficult to identify
early stages of an attack. Seeing how similar the ranking of the top 20 DPORTs and their
% composition helps us to understand the scores presented in Section 6.9.
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4.2.3 Destination IP Address

Figure 4.1: 146/8-032021: No. of Packets per DSTIP

Having looked at the unique SRCIP addresses and DPORTs, the study shifted its attention
to look at one critical variable, i.e. DSTIP addresses. The approach used for describing
the DSTIP addresses was different from the one used for unique SRCIP addresses and
DPORTs. Figure 4.1 is a sample graphical representation of how TCP packets were
distributed per given unique DSTIP. This section shows how traffic was equally distributed
(equitable distribution) across the unique DSTIP addresses for each network telescope.
There were a few outliers in each dataset shown by the spikes observed in Figure 4.1,
although they were not exactly in the same positions. What is essential is that a majority
of the unique DSTIP addresses received uniform traffic throughout the data collection
period. This is now where Tables 4.21 comes into play to give a statistical value of how
this packet distribution occurred in all nine datasets.

The values for consideration in descriptive statistics were mean, median, standard devia-
tion (std), the minimum number of packets registered by a unique DSTIP (represented as
min) and the maximum number of packets received by a unique DSTIP (represented by
max ). All these are well known statistical terms that are not new to this research, how-
ever, they are used here to give more meaning to the data by describing the characteristics
of the data used.
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Table 4.20: Unique SRCIP monitoring based on DSTIP

Dataset Name: 146/8-012021

Label IP Range No. of SRCIP SRCIP(%) Packets(%)
A 0 - 63 158,862 25.73 24.43
B 64 - 127 154,725 25.06 24.99
C 128 - 191 149,230 24.17 25.13
D 192 - 255 148,427 24.04 24.44

Total SRCIP Count: 617,420

Dataset Name: 155/8-022021
Label IP Range No. of SRCIP SRCIP(%) Packets(%)

A 0 - 63 139,656 25.35 24.93
B 64 - 127 141,364 25.66 25.03
C 128 - 191 135,580 24.61 25.56
D 192 - 255 134,313 24.38 24.51

Total SRCIP Count: 550,915

Dataset Name: 196-A/8-032021
Label IP Ranges No. of SRCIP SRCIP(%) Packets(%)

A 0 - 63 154,850 25.03 24.80
B 64 - 127 159,985 25.86 24.75
C 128 - 191 151,386 24.47 25.59
D 192 - 255 152,437 24.64 24.86

Total SRCIP Count: 618,660

An exploratory analysis was conducted to observe how the unique SRCIP addresses dis-
tributed their packets to the unique DSTIP addresses. Table 4.20 shows how many
unique SRCIP addresses were registered within the given DSTIP range (which represents
a subnet) and how many packets each DSTIP range received from the unique SRCIP
addresses registered in the three datasets. Note that the datasets are from the three
network telescopes and as can be seen from the naming, data was collected from January
to March. Each network telescope represents a different month. The labels are the same
because irrespective of them being from different datasets, they represent the same range.

Table 4.20 also shows proportion of both the DSTIP addresses and the packets in relation
to the subnet that registered them. There are no major clear cut differences as to which
subnet received more traffic or unique SRCIPs than the other. The variation of both the
SRCIP addresses and packets fall under the range of 1%. From the exploratory analysis, it
was noticed that the unique SRCIP addresses did not send traffic to all DSTIP addresses.
If this was true then there would have been more overlaps and equal number of unique
SRCIP addresses present in the subnets. This brought the conclusion that the SRCIP
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addresses are not present in all DSTIP addresses. By this logic, it also means that no
single subnet mask contained all unique SRCIP addresses as seen in Table 4.20. This
means that any sequential sampling is most likely to result in similar findings as the unique
SRCIP addresses are evenly distributed across the subnets. This observation may also
mean that no matter how the data is sampled (systematic, sequential or random sampling)
the variations may not be that significant, at least with these datasets). This is most likely
attributed to the fact that the unique SRCIP addresses had different observable periods
and not uniform throughout the observation period. It is this equitable distribution of
unique SRCIPs that propelled the decision to conduct sequential sampling by using one
sample per subnet as presented in Section 6.2.

Table 4.21 shows the statistical terms used to describe each dataset, name of the network
telescope used to collect the data, followed by a row that shows the month in which the
data was collected. For each network telescope, three months worth of statistics belonging
to it is presented.

Table 4.21: Descriptive Statistics for No. of TCP Packets Observed per DSTIP

Network Telescope: 146/8

Statistic January February March
mean 118,186 126,525 131,338
median 117,574 126,283 130,237
std 1,886 1,284 6,675
min 115,782 123,564 127,469
max 133,626 131,452 200,282

Network Telescope: 155/8
Statistic January February March
mean 138,365 140,430 147,037
median 133,300 138,011 146,190
std 29,089 142,85 3,119
min 129,024 136,291 142,323
max 350,474 246,733 175,007

Network Telescope: 196-A/8
Statistic January February March
mean 163,916 140,497 131,135
median 162,435 139,799 129,605
std 12,561 64,97 8,127
min 158,107 136,261 127,408
max 360,859 241 661 202,566
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For instance, the first block of statistics shown in Table 4.21 gives descriptive statistics
for TCP datasets that were collected from 146/8 network telescope from January 2021
to March 2021. The values presented represent the number of TCP packets observed
per DSTIP address. Due to the high volume of TCP traffic and low volume of UDP,
to demonstrate the statistics surrounding the datasets, this section primarily focused on
TCP traffic.

In January, each unique DSTIP address received 118,186 packets in network telescope
146/8 on average. By looking at the min and max values, one can tell that there was
a significant gap of about 17, 800 packets, which helps to explain the high value of std
which measures the spread of data from the mean value. Looking at the std value for
February in the same network telescope, one can note that the std value has gone down
a bit since the gap between the minimum value and the maximum value is smaller. The
highest value for network telescope 146/8 is observed in March which is easily explainable
by looking and the significant gap that exists between the minimum and the maximum
value.

A visual representation of the data for Network telescope 146/8 is displayed in Figure
4.1, which easily shows the maximum value shown in the March dataset. What these std
values are essentially communicating is that the number of packets received by the unique
DSTIP addresses is not as uniform as Figure 4.1 is presenting them i.e. showing a few
spikes. This is attributed to the presence of outliers in the datasets where in one instance,
a single DSTIP address received more packets than anticipated or another received a small
number of packets than anticipated, thus creating a range of values with which each of
the DSTIP addresses could have received.

Network telescope 146/8 is the only telescope that had the least value spread between the
maximum and the minimum values compared to Network telescope 155/8 and Network
telescope 196-A/8. On average, individual DSTIP addresses in Network telescope 196-
A/8 received more traffic (163,916) than any other telescope. From Table 4.21, Network
telescope 155/8 and Network telescope 196-A/8 have high std values which are largely
attributed to the fact that the maximum value increased by a huge margin in these two
datasets on top of them having more outliers than telescope 146/8. This is very true for
January and February as shown in Network telescopes 155/8 and 196-A/8. It is also
important to note that the values computed for std are not just direct results of the gap
between the min and max values, rather the study also took into account how many of the
unique DSTIP addresses received traffic that was either above average or below average.
The more DSTIP addresses received traffic away from the mean values, the higher the
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std values. This can be seen by looking at Network telescopes 155/8 and 196-A/8 in
Table 4.21, in particular in the month of February. From here, one can note that the min
and max values are not far away from each other, but the computational value that was
computed for the datasets’ std are nowhere near each other. The std value for Network
telescope 155/8 in February is at least two times more than the std value for Network
telescope 196-A/8.

While the std values may be high especially for Network telescopes 155/8 and 196-A/8,
Table 4.21 also show us a significant term in the form of median which is quite close
to the mean of their respective datasets. Essentially, these two values portray a picture
that, although the std value is high, a majority of the data received by the unique DSTIP
addresses gives a very good idea of how much each unique DSTIP address received in
their respective months overall. Graphically, this is supported by Figure 4.1 as most of
the unique DSTIP addresses received uniform traffic.

The study took a similar approach of descriptive statistics to understand how many, on
average (mean), unique SRCIP addresses each DSTIP received and monitor the measure
of spread (std) between the DSTIP address that received most (max ) unique SRCIP
addresses and the one that received the least (min) number of unique SRCIP address.
The results of such descriptive statistics are shown in Table 4.22. The std is significantly
lower than the values observed when working with packets (see Table 4.21). This is
particularly important in this study because if there is not much disparity in the unique
SRCIP addresses, then it makes it easier to sample out in any format without having a
lot of concern about missing out on significant loss in threat intelligence data. This is the
case because it is the unique SRCIP addresses that are responsible for this traffic, thus
making the disparities observed in the network traffic of little concern.
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Table 4.22: Descriptive Statistics for No. of Unique SRCIP Observed per DSTIP

Network Telescope: 146/8

Statistic January February March
mean 18,784 17,094 19,938
median 18,756 17,089 19,935
std 206 147 198
min 17,566 15,954 18,141
max 19,565 17,888 20,702

Network Telescope: 155/8
Statistic January February March
mean 28,388 25,339 30,266
median 28,353 25,313 30,229
std 410 317 533
min 27,064 24,340 28,934
max 33,781 29,319 38,100

Network Telescope: 196-A/8
Statistic January February March
mean 44,275 28,929 32,241
median 44,260 28,909 32,229
std 248 190 221
min 42,692 27,598 30,698
max 45,332 29,738 33,627

The measure of spread (standard deviation - std) of the number of unique SRCIP ad-
dresses received by each unique DSTIP address from the mean was smaller than what
was observed when looking at the number of packets each DSTIP address received. This
has nothing to do with the number of unique SRCIP addresses being fewer than the
packets, but rather somewhat uniform distribution of unique SRCIP addresses among the
DSTIP addresses. The study will get back to this point in Section 6.4 after doing some
sampling.

Secondly, Tables 4.22 also show that the min and the max values are not far off from
the mean, supporting the same argument raised in the first point that there were small
variations in the number of unique SRCIP addresses received by the unique DSTIP ad-
dresses. Larger values of std are observed in telescope 155/8 (shown in Tables 4.22
and Network telescope 196-A). However, Network telescope 155/8 contained neither the
largest number of unique SRCIP nor the lowest volume of unique SRCIP addresses. Apart
from data collected in March, Network telescope 196-A/8 reported the highest number
of unique SRCIP addresses observed in any given month. This high volume of unique
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SRCIP addresses corresponds with a high volume of traffic in January for Network tele-
scope 196-A. Other than that, there is no direct relationship between the high volume
of unique SRCIP addresses and the number of packets contributed by the unique SRCIP
addresses.

Overall, the study observed that the month of February did not contain a high volume of
unique SRCIPs per DSTIP address. Though the differences for January and February are
not that big for Network telescopes 146/8 and 155/8, there is a gap of over 10,000 unique
SRCIP addresses received per DSTIP in Network telescope 196-A/8. This is observed
by looking at all the statistical values in Table 4.22. The first assumption would have
been that February has fewer days than the other two months, but the statistical values
shown in Network telescope 196-A/8 cannot warrant such a huge drop in the average
number of unique SRCIP. The largest number of unique SRCIP addresses observed per
unique DSTIP were observed in March for Network telescopes 146/8 and 155/8 but for
Network telescope 196-A/8, its highest number of unique SCRIP addresses was recorded
in January. There was a lot of disparity in Network telescope 155/8 in terms of how
many unique SRCIP addresses each unique DSTIP address observed. This is shown by a
big margin between the min and the max values but also its std is the highest among all
three network telescopes every single month.

4.3 Graphical representation of TCP and UDP Datasets

The study shifted its attention from focusing on the statistical view of the data to a
graphical view to aid in understanding and supporting the statistics shown in this chapter.
There were two forms of graphical plots that were used to aid in giving an overview of
how the data looked like: first, line plots were used followed by box plots to support the
descriptive statistics already presented. Both plots (line and box plot) were used with the
same overall goal in mind i.e. to offer a comparison among the six different datasets of each
month and 18 in total for three months. Box plots on their own are useful for indicating
whether a distribution is skewed and whether there are potential unusual observations
(outliers) in the data set which cannot easily be seen in other plots.

Figures 4.2 - 4.4 shows a time series of the 18 datasets and how the packets were
distributed across each month under study. From these three graphs shown in Figures
4.2 - 4.4, one can easily see the gap that is there in terms of volume of traffic between
the TCP datasets and the UDP datasets. These differences were also observed in TCP
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and UDP packets from the data dictionaries and statistical tables in Sections 4.1.1 and
4.2.3, however, this time, a visual perspective of the same dataset is presented.

(a) TCP (b) UDP

Figure 4.2: January 2021 Time-based Traffic

(a) TCP (b) UDP

Figure 4.3: February 2021 Time-based Traffic

Each plot has a timeline, represented in days in the x-axis, labelled Date and the y-axis
shows the number of packets, labelled No. of Packets. Each of the three line plots are
showing the number of packets observed in the network telescopes per day. Each individual
plot represents a month worth of TCP and UDP traffic collected within a specified month.
The line plots are colour coded to show which line represents which datasets and thus the
legend is there to aid in the identification of that. When the study looked at traffic based
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on the number of packets observed per unique DSTIP (See Table 4.22), it was observed
that the highest volume of traffic was recorded in Network telescope 196-A/8. This was
confirmed by looking at the average number of packets each DSTIP received.

(a) TCP (b) UDP

Figure 4.4: March 2021 Time-based Traffic

The study also looked at the minimum and maximum values each DSTIP received in this
network telescope. This notion was also supported by the data dictionaries that offered
insight into the summary of the datasets (See Tables 4.1 - 4.3). Thus Figures 4.2 and
4.3, confirms this observation by showing a high volume of traffic for both TCP and UDP
datasets observed in Network telescope 196-A/8 (represented by the black line). The
major take away from the plots (Figures 4.2 and 4.3) is that the pattern in TCP traffic
are generally similar with more variation in the UDP traffic.

For January and February Network telescope 196-A/8 registered the highest number
of traffic reported. It is only in March that Network telescope 155/8 reported more
TCP traffic than 196-A/8. This traffic is not reflected in the number of unique SRCIP
observed in each network telescope (as 196-A/8 still had more unique SRCIP per DSTIP),
however, it is observed when looking at the number of packets observed per unique DSTIP.
Network telescope 196-A/8, however, showed more packets for UDP traffic (see Figure
4.4b) which were largely received by Port 123/UDP. In March, Port 123/UDP received
over 52% of the total UDP traffic for Network telescope 196-A/8. The service that run
on Port 123/UDP and the potential vulnerabilities were explained in Section 4.2.2,
Table 4.19. Supporting this observation is the Japan Computer Emergency Response
Team Coordination Center (JPCERT/CC) Internet Threat Monitoring Report13 which

13https://www.jpcert.or.jp/english/doc/TSUBAMEReport2020Q4_en.pdf
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showed that in the previous quarter (October - December 2020), Port 123/UDP was not
in their top 10 ports that received more traffic, but the umber of hits for Port 123/UDP
rose at the beginning of March, making it number three on their ranking.

In the same months, January and February, Network Telescope 155/8 reported the high-
est average number of packets per DSTIP although the highest number of packets per
DSTIP address was still recorded in Network telescope 196-A/8. For the month of
February, network traffic was at its lowest point in all three network telescopes, especially
in the last week of the month. There are a lot of fluctuations in January for all three
network telescopes’ TCP traffic with each of the three network telescopes finishing with
a spike. However, this spike, as traffic moved into February, is not reflected to start off
at a peak (See Figures 4.2a and 4.3a). On the other hand, in all the three datasets,
the UDP traffic was highest in network telescope 196-A/8 with traffic record to reach
800,000 packets on the 22nd of February (see Figure 4.2b) and nearly 7,200,000 packets
on the 19th of March (see Figure 4.4b). This is the highest number of packets recorded
in a day by any dataset in all three months of observation.

While working with unique SRCIPs and DPORTs in Sections 4.2.1 and 4.2.2, it was
observed that there was a lot of similarity in both ranking and the presence of specific
unique SRCIPs and DPORTs between Network telescopes 146/8 and 155/8. Looking at
the graphical representation in Figures 4.2 - 4.4, it is apparent to note that the traffic
patterns for Network telescopes 146/8 and 155/8 are more similar to each other than
they are to Network telescope 196-A/8. This is true for all three months of observation
and for both TCP and UDP traffic. Traffic patterns looked more similar in network
telescopes for TCP traffic in February and March (see Figures 4.3a and 4.4a).

(a) TCP (b) UDP

Figure 4.5: Box plot showing Packet distribution in January 2021
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(a) TCP (b) UDP

Figure 4.6: Box plot showing Packet distribution in February 2021

(a) TCP (b) UDP

Figure 4.7: Box plot showing Packet distribution in March 2021

As explained in Section 4.2, the high volume is not related to the high number of unique
SRCIP addresses but rather unusual traffic that was received by specific unique SRCIP
addresses on specific days. Plotting the datasets separately (UDP and TCP datasets)
helps to easily identify the outliers present in each dataset. This is where the box plots
come into play to detect the presence of outliers in the datasets. Looking at all three box
plots (Figures 4.5 - 4.7), each month has outliers present in them. The presence of each
outlier detected here has been explained in Section 4.2, thus this section will not focus
on explaining these again but rather support the statistics already presented.
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The presence of these outliers in each of the datasets helps to explain the fluctuations
observed when looking at the time series plots which showed that traffic was not uniform
throughout the time it was being collected. Each unusual amount of traffic recorded
observed has shown (in part) that it is not necessarily as a result of the presence of new
unique SRCIP addresses, but rather that the IP addresses present recorded more traffic
than it had been doing previously. Most outliers here show unusual traffic recorded on a
specific day. For instance, Figure 4.7b in Network telescope 196-A/8 shows an outlier
the affects the total traffic recorded in UDP dataset for Network telescope 196-A/8.
This, as explained earlier in this section, was a result of Port 123/UDP receiving more
daily hits than usual. In fact, March is the only month where UDP traffic registered
more traffic than TCP traffic. There is also the presence of unique SRCIP that shows
up only once in the data collection window and transmitted large quantities of packets.
The presence of unusual traffic in each case led to the outliers observed throughout the
datasets.

With regard to the volume of traffic received by each network telescope, it has already
been established that Network telescope 196-A/8 received more packets than any other
network telescope. This is with the exception of TCP traffic in March (see Figure 4.7a)
where Network telescope 155/8 received more packets than any other dataset. The large
volume of packets present in the Network telescope 196-A/8 is confirmed here by looking
at the spread of each box plot representing Network telescope 196-A/8. For instance,
Figure 4.6b box plot for Network telescope 196-A/8 has a range that is higher than
any other network telescope. The Box plot shown in Figure 4.5a reveals that the box
plot for Network telescope 196-A/8 is longer (indicating the max and min values) than
Network telescopes 146/8 and 155/8. This is true as well in Figure 4.5b. The box plots
also confirm that the range of packet distribution is fairly similar, especially for Network
telescope 146/8 and 155/8.

4.4 Chapter Summary

This chapter did an exploratory data analysis of the data that was used for this research
study. The chapter began by explaining to the reader the source of the data that was used
in Section 4.1. In this section, the study presented the data summary in form of data
dictionaries but also explained how data sampling was conducted. To better understand
the data characteristics, the study went further to do a descriptive analysis of all the
datasets under study in Section 4.2. In this section SRCIP addresses that sent the most
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traffic are ranked and presented. This is true for TCP and UDP. This was immediately
followed by a network port breakdown in the same section, which ranked the ports based
on the traffic they received and the type of protocol they used to transmit the data. A
statistical approach to describe the average number of packets received by each unique
DSTIP address is presented in this section as well.

A graphical representation of the data was shown in Section 4.3. Essentially, this section
was added to support the observation made and established with the statistical approach.
Both line plots and box plots are presented to make this confirmation. The chapter
concludes with a summary. The datasets explored in this chapter are the ones that the
study will look at in Chapters 5, and 6 using the statistical techniques introduced in
Chapter 3.



5
Bootstrapping IBR Dataset

As explained in Section 3.2, bootstrapping works on the principle of starting with a
dataset with an unknown underlying distribution from which a partially randomised sam-
ple of the available data is selected. Using any specific population parameter of interest,
a normal distribution is formulated by applying a statistical function to the parameter
of interest. This study used mean as the statistical parameter of interest to bootstrap
IBR data. Building on this background, and tools and methods previously discussed in
Section 3.2, an application of these methods is presented in this Chapter.

The chapter begins by explaining why bootstrapping is essential to this study in Section
5.1. This is followed by the research approach that was used to pre-process the data in
Section 5.2. Two bootstrapping techniques were used to simulate the data and this is
discussed in Section 5.3. The research findings were split into three categories: firstly, the
study showed the relationship that exists between the average number of unique sources IP
addresses in each bootstrap sample and the duration of observation in Section 5.4. This
is shown for both the monthly and the quarterly datasets. Section 5.5 follows, showing
findings from bootstrapping; how bootstrapping operated on different levels of confidence

104
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interval (CI) ranging from 80% CI to 99% CI. In this section, bootstrapping is split into
parametric and non-parametric bootstrapping. The CI shows the range where the true
average number of unique SRCIP addresses observed per hour in a given dataset lies.
The research study presented a graphical representation of CI and the interpretation in
Section 5.6. Recommendations and artefacts from this chapter are presented in Section
5.7. This chapter concludes with a summary in Section 5.8.

5.1 Bootstrapping Rationale

Bootstrapping is important to this study because the overall idea is that the study is
working with the assumption that a user does not have access to a larger network telescope.
Large, in this case, is defined as any network telescope sensor that contains more than
256 DSTIP addresses (i.e. /24 net-blocks). The number was chosen because this study
worked with /24 net-blocks which contain a maximum of 256 DSTIP addresses. This then
means that a smaller network telescope will be any network telescope that can host less
than 256 DSTIP addresses. In essence, if a network telescope user has 32 unique DSTIP
addresses available, these will be the only ones to use for the telescope i.e. a user can
only work with what they have. However, it is hard to tell how representable the data the
user will collect with these 32 unique DSTIP addresses will be in relation to another user
who has 128 unique DSTIP addresses or 256 DSTIP addresses. With bootstrapping, this
study aimed to simulate the various samples of the baseline data to mimic the number of
data points observed in the baseline data. The baseline dataset, in this case, represents
the full data from /24 IPv4 net-blocks of network telescope while the different samples
represent smaller network telescopes.

By simulating the samples to reproduce the baseline dataset, the study computed how
different the bootstrap samples are from the actual baseline dataset. Using such differences
between the bootstrap sample and the baseline dataset, the study shows how suitable
simulating the IBR data is and how representable a smaller network telescope is, compared
to a larger one. Overall, with bootstrapping, a user will know with a certain degree of
confidence what range of unique SRCIP addresses will be collected given the number of
unique DSTIP they have for network telescope usage. The confidence intervals (CI) will
vary based on the size of the network telescope, which is defined as the number of unique
DSTIP addresses to be used by the network telescope.

In this way, a user who does not have access to a larger IPv4 subnet that the network
telescope can use will be able to relate or compute how many unique SRCIP addresses they
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ought to get from the sub-network they have for their network telescope. The computed
CI, coupled with the level of confidence chosen, will inform the user of the knowledge
gap (in terms of threat intelligence) that they should be expecting. The study has an
advantage in that it had access to baseline datasets with all the data points. As such,
simulating samples from it offered a proper benchmark from which smaller samples could
be gauged, something that a smaller network telescope user will not have.

5.2 Research Approach

There were two main bootstrap sample sizes which were based on the duration of obser-
vation. The first bootstrap sample contained 744 data points, the same number of data
points that one would find in baseline data if they were to observe for one month. In this
case, each hour within a month was considered a single data point. The second bootstrap
sample contained 2,160 data points, the same number of data points one would find if
they were to observe for three months, starting from January to March. Note that the
data used is from 2021 and so February was treated to have 28 days. However, if each
month is presumed to contain 30 days on average, the same number of data points would
still be observed since January and March have 31 days. Thus two sets of experiments
were conducted using the datasets presented in Section 4.1.

The study opted that all the bootstrap samples have the same number of data points as
their baseline data as proposed by Kirby and Gerlanc (2013); Chamandy et al. (2015);
Efron and Hastie (2016). The reason for creating bootstrap samples of the same size as the
baseline data was to ensure that there was comparability between the baseline data and
the bootstrap samples (Chamandy et al., 2015; Hesterberg, 2015). Secondly, by having
bootstrap samples of the same size as the baseline, the need of standardising the bootstrap
samples was eliminated since they contain the same number of data points as the baseline
(Efron and Hastie, 2016). In addition to this, the study used this approach to ensure that
the standard errors observed in the original dataset are reflected in the bootstrap samples
as compared to having hypothetically larger or smaller samples (Hesterberg, 2015). This
essentially meant that the number of observations was the same but the composition was
different just as explained in Section 3.2.

Considering that each of the unique DSTIP addresses in the network telescopes registered
network traffic from outside the network, another approach which directly related to the
main research question was identifying the number of unique SRCIP addresses in our



5.2. RESEARCH APPROACH 107

samples i.e. how many unique SRCIP addresses were registered by a small group of
destination IP addresses throughout the observation period? In order to do this, the
study randomly sampled the baseline data into six categories of subnet equivalent sizes
i.e. 4, 8, 16, 32, 64 and 128 unique DSTIP addresses. Note that the sample sizes mimic
the number of unique DSTIP addresses found in different subnets. These samples in
this study are referred to as subnet equivalents because they contain the same number of
unique DSTIP addresses that one would find in an actual network subnet.

Each initial input data was made up of samples containing the date in which the data was
collected, a set of unique DSTIP addresses that received the traffic, and those that made
up the sample of interest (samples of sizes 4, 8, 16, 32, 64 and 128). The input data also
contained a unique SRCIP address field. Once the DSTIP addresses were used to create
a sample, the input data was further transformed to contain the date field (the field was
split into hours and not days) and the number of unique SRCIP addresses collected on
an hourly basis. To come up with standardized samples, a fixed number of data points
computed on an hourly basis was calculated using the baseline dataset data points. i.e. the
total number of hours observed during one month and three months’ periods as explained
earlier in this section. In addition to this, the number of hours contained in the baseline
dataset (744 for monthly datasets and 2,160 for quarterly datasets), was the number of
times that each sample was simulated. Python scripts used to process data for this chapter
are appended in Appendix D

Each baseline dataset (named after the network telescope) contained all the 256 DSTIP
addresses, from which DSTIP addresses were randomly selected into the sizes of 4, 8, 16,
32, 64 and 128 DSTIP addresses to create new samples (subnet equivalents). It was from
these subnet equivalents that the bootstrap samples were generated and the computation
of confidence interval (CI) conducted from it. The study also bootstrapped the baseline
dataset which contained all the 256 unique destination IP addresses. This way, it would
be easier to see how far off the smaller subnet equivalents performed against the baseline
bootstrap. These samples represent different sizes of the network telescope ‘lens’.

From each dataset, outliers were removed to ensure that they did not affect the accuracy
of the results. Using the Interquartile Range (IQR), a range that contained at least
80% of the data points in each dataset was identified, thus any number falling outside
this range was detected and treated as an outlier. Only random samples were used for
bootstrapping because CI calculations assume you have a genuine random sample of the
relevant population (Akter, 2014). If the sample is not truly random, one cannot rely on
the intervals computed. In our case, to make the results reproducible the study seeded
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the first sample value. This was done by fixating the starting value of each simulation.
This means that if the reader wished to conduct the experiment on their own, it would
make it easier to arrive at the same results. Appendix D shows where the script for this
process is presented.

5.3 Bootstrapping Techniques

In this study, bootstrapping was categorised into two parts: parametric and non-parametric
bootstrapping. Thus the results presented will be in the form of either tables or graphs
which are labelled based on whether it is parametric or non-parametric. In addition to
this, tables and graphs will show the name of the network telescope from which the data
was collected. The results will also show the duration of observation or data collection.
More details on these two bootstrapping techniques are found in Section 3.2.

5.4 Regression Analysis Findings

In this section, the study presents its findings regarding the relationship that exists be-
tween the number of unique SRCIP addresses observed in the network telescope and what
happens to the volume of these unique SRCIP addresses over time. For demonstration
purposes, the section presents six baseline datasets presented in the form of plots (shown
in Figures 5.1 - 5.3). Each of the plots represents a /24 IPv4 baseline dataset from the
network telescopes under study. During bootstrapping, the study used two main boot-
strap sizes. The first bootstrapping samples contained 744 data points, representing the
number of hours present in a month that has 31 days (in our case January and March).
Secondly, the study conducted another set of bootstrapping with each sample containing
2160 data points (January - March). Please note that these graphs used in this section
are directly from the baseline datasets and are not bootstrap samples. As such, the re-
lationship between the number of unique SRCIP addresses and time presented in these
polynomial regression plots is not in any way a result of bootstrapping, but rather the
true reflection of the actual datasets.

Each of the Y-axis presented in Figures 5.1 - 5.3 show the number of unique SRCIP
addresses while the X-axis show the number of hours within the given dataset. In other
words, the plots display a polynomial regression that shows the relationship between the
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total number of unique SRCIP addresses observed on an hourly basis. Each plot shows
two datasets with every plot labelled (a) January - March showing three months worth
of data while the plots labelled (b) January show the data collected in January. Thus all
the datasets for the data collected in January show 744 hours while the datasets collected
from January to March show a total of 2160 hours. The upper and lower confidence
interval shown in the datasets were plotted at 95% Confidence Interval (CI). At the time
of plotting, all outliers had been eliminated using IQR as explained in Section 5.2.
However, the study did make plots with outliers included in the datasets. These plots
with outliers can be found in Appendix E.1.

(a) January 2021 (b) January - March [2021]

Figure 5.1: 146/8: Number of Unique SRCIP observed/hour

(a) January 2021 (b) January - March [2021]

Figure 5.2: 196-A/8: Number of Unique SRCIP observed/hour
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(a) January 2021 (b) January - March [2021]

Figure 5.3: 155/8: Number of Unique SRCIP observed/hour

All regression analysis plots for the remaining months (February - March) for every dataset
can be found in Appendix E.2. The polynomial line (represented by the red line) is
regression line that is explained in this paragraph. One of the main findings that can
clearly be observed from all these plots is that, as the number of hours of observation
increased, the volume of the unique SRCIP addresses observed per hour was declining.
The plots show an inverse relationship between time and the number of new unique
SRCIP addresses within any given month. Plots that had 744 data points in all the three
network telescopes (see Figures 5.1a, 5.2a and 5.3a) show a similar pattern where, at
the beginning of the month of January, they register a high number of unique SRCIP
addresses observed per hour. Then the number of new unique SRCIP takes a steady
decline which is later followed by a slight rise that leads into a new month. This slight
rise coming in at the end of the month is the presence of a high volume of new unique
SRCIP addresses that were not present at any point in time during the month of January.
However, note that in each plot there is a region labelled A, B and C (see in Figures 5.1
- 5.3) which shows fewer to no number of data points on the plots. In these regions, each
network telescope registered a high volume of unique SRCIP addresses than any other
point. This happened between 8th - 12th January 2021, which also resulted in high volume
of traffic (See Section 4.3). The use of IQR and plotting of the data at 95% CI ensured
that these data points are treated as outliers. This is why regions labelled A, B and C
appear to have fewer to no data points than any other area on the plots. The study has
shown regression plots containing this outage for each plot in Figures E.1 - E.3. More
regression analysis plots are found in Appendix E.
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Noteworthy is the change in the volume of unique SRCIP addresses registered per hour
in the Y-axis of Figures 5.1b, 5.2b and 5.3b when compared to Figures 5.1a, 5.2a
and 5.3a. January - March [2021] plots show a lower volume of unique SRCIP addresses
observed per hour than January 2021 plots. In addition to this, the slope for the polyno-
mial regression line at the beginning of the January - March plots is steeper than that
shown in the January plots. This pattern seen in January 2021 plots is also observed
in February 2021 and March 2021 plots (see Appendix E.2). This is the case because
monthly dataset plots only focus on unique SRCIP addresses present within that month
while quarterly plots focused on three months worth of data. For instance, using the
month of March as an example, the first time some of the unique SRCIP addresses are
being observed is not in March but rather in January and then February. Thus by the
time observation is done in March in the three months time span, these unique SRCIP
addresses registered as new in monthly datasets are not registered as new unique SRCIP
addresses in the larger datasets. This holds true if the observation is extended to a longer
duration i.e. a six months worth of analysis will show less number of unique SRCIP ad-
dresses per hour and the regression line will be steeper than that of three months worth
of data analysis.

There is a steady presence of new unique SRCIP addresses present in February (See
Figures 5.1, 5.2 and 5.3) which takes us into the month of March at which point the
graphs for the large datasets hit their lowest points. The uniformity in the flow of unique
SRCIP addresses in both large and small datasets across all three network telescopes
supports the study done by (Nkhumeleni, 2014) that the distributed network telescopes
at Rhodes University do collect data that is similar. With this view, the researchers of
this study do expect that if more network telescopes are added to the same network, the
results will take the same pattern. What this means to network telescope users is that,
if they connected different network telescope sensors to their network, the same pattern
in all their network telescopes is expected to take the same shape as any one of them.
On a grand scale, this relationship between the number of unique SRCIP address versus
time, means that any given network telescope (if monitored for a longer period of time)
will show a curve similar to the ones presented in Figures 5.1b, 5.2b and 5.3b. The
presence of unique SRCIP addresses probing the same network repeatedly over time has
been a known phenomenon in network telescope research (Pearson, 2020). Usually, such
SRCIP addresses are from persistent networks (networks that probe other networks at
least once each month).
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When the researchers randomly sampled the baseline datasets to formulate subnet equiva-
lents and plot the outcome of it, all the subnet equivalents exhibited the same relationship
over time. In addition to this, when a 256 baseline datum was bootstrapped and its confi-
dence interval computed (more details in Section 5.5), it was observed that the CI range
(which is based on the count of values only) provided for each of the bootstrapped sam-
ples showed a very similar range of values that were observed in these baseline datasets.
Moreover, when the study compared the volume of unique SRCIP addresses observed
for March datasets and those observed from January to March, it was observed that the
volume within each CI range had declined as evidenced in the plots shown in Figures
5.1, 5.2 and 5.3.

The study was not interested in predicting any upcoming unique SRCIP addresses within
the observable period and thus it did not go further to a point of creating regression
equations to show future behaviour (prediction). The main objective was to observe what
happens to the unique SRCIP addresses over time when it comes to regression analysis.
The study also looked at linear regression analysis, and although the trend was the same,
the plots from it did not fully represent all the data points as did the polynomial regression
shown in this section.

5.5 Confidence Interval Findings

This section displays how bootstrapping operated on different levels of confidence interval
(CI) ranging from 80% CI to 99% CI. Each degree of confidence (80% CI to 99% CI) offers
certainty that the true average number of unique SRCIP addresses observed per hour in a
given dataset lies within the selected range. The data used throughout this section is from
the TCP datasets. Each table herein shows the range in the average number of unique
SRCIP addresses observed per hour for each respective sample. Note that normalisation of
the findings for each dataset sample was done by ensuring each dataset sample contained
the same number of data points. Secondly, each non-parametric bootstrap sample used its
own mean to compute. This way the results become comparable (Dixon, 2006; Hesterberg,
2015).

The core idea behind bootstrapping IBR data is to show a user the range in which the
average number of unique SRCIP addresses observed per hour would fall should they
happen to have fewer IP addresses. For this study, few was defined as anything below a
/24 IPv4 address block i.e. 256 unique DSTIP addresses. With this in mind, one should
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not expect a /24 IPv4 baseline sample which has 256 IP addresses to display a CI identical
or similar to /e32 subnet equivalent as that is not possible. More unique DSTIP will still
collect more unique SRCIP addresses. However, with CI computed from bootstrapping,
a user would have the confidence to know what kind of threat intelligence data (volume-
wise) to expect given the number of unique DSTIP addresses they are willing to use for
their network telescope. In this way, bootstrapping addresses one of the key questions of
this research by giving the network telescope user the level of confidence they should have
in the data collected by their network telescope. Having three /24 IPv4 blocks as the
benchmark datasets helps in comparing the findings from this benchmark to those found
in smaller bootstrap samples which are a representation of smaller network telescopes.
Different percentages of confidence will offer a network telescope user different CI ranges.
Different subnet equivalents will also offer different ranges of CI.

Each table shows percentages of confidence at which different ranges of CI were com-
puted. These have been labelled CI levels which range from 80% to 99%. In this section,
datasets are presented by using the name of the network telescope followed by the name
of the subnet equivalent. For instance, a /24 IPv4 baseline bootstrap sample for Network
telescope 146/8 will be presented as 146/8 - /e24, which means that this sample had
256 unique DSTIP addresses. In other words, the study bootstrapped a baseline dataset
without which comparison with sub samples would not be possible. A bootstrap sample
from the same network telescope which had 128 unique DSTIP addresses will be pre-
sented as 146/8 - /e25. If the bootstrap sample belongs to Network telescope 155/8
and has 8 unique DSTIP addresses, it will be presented as 155/8 - /e29

As explained earlier in Section 3.4, CI coverage is the probability that the CI includes
the true parameter, under repeated sampling from the same underlying population. The
true parameter is the real value that shows an actual number of unique SRCIP addresses
in a given dataset. For example, assuming that the mean value of a baseline dataset has
been computed to be 450 from the first simulation which has involved multiple sampling
of the dataset to come up with the bootstrap sample, if the data is simulated again, it is
unlikely that the average will be the same as before when the sampling is random. So,
what bootstrapping does is to make sure that a series of simulations done on the data
samples create a range in which each time a simulation is done on the data sample, the
mean value computed from it will fall within this range. Thus the expected mean is what
can be described as the true parameter.
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In our case, baseline and subnet equivalent datasets are sampled 744 and 2160 times
and simulated for the same amount of times. Each bootstrap sample will have its own
CI based on the composition of the sample. Assume the interval is between 445 unique
SRCIP addresses per hour and 555 unique SRCIP addresses per hour. If the researchers
take 100 random DSTIP addresses to form a sample from the baseline dataset at 95% CI,
the average number of unique SRCIP addresses observed per hour in that sample should
fall between 445 unique SRCIP addresses per hour and 555 unique SRCIP addresses per
hour in 95 of those samples.

If the researchers want even greater confidence, they can expand the interval to 99%
confidence. Doing so invariably creates a broader range, as it makes room for a greater
number of sample means. If they establish the 99% CI as being between 445 unique
SRCIP addresses per hour and 560 unique SRCIP addresses, they can expect 99 of the
100 samples being evaluated to contain a mean value between these numbers. If the CI is
computed at an 80% confidence level, the interval is then expected to be smaller and 80 of
the 100 samples being evaluated will contain a mean within the interval computed. The
range computed from the bootstrap sample is what gives the user the level of confidence
needed in the data in order to make informed decisions. In this section, the study focused
on interpreting the results and what they mean to this research.

The study computed CI at different levels of confidence in order to offer a wider scope from
which to work with. Depending on the nature of the study, different fields use different
levels of CI in order to attain their objectives. For instance, medical practitioners demand
the highest level of confidence because they deal with life. In our case, the study started
with an 80% confidence level until 99% CI. As explained in Section 5.3 bootstrapping was
categorised into two parts in this study: parametric and non-parametric bootstrapping.
Thus the results will be split into two sub-categories i.e. CI for parametric and non-
parametric bootstrapping. Within these two categories, the results are also split further
into two, based on the duration of data collection. The first set of tables focus on the larger
datasets, which spanned over three months (January to March). These contained 2,160
data points per dataset, which invariably created 2,160 samples. The second section of
results focused on the monthly analysis which covered the month of March alone. These
contained 744 data points creating 744 samples from each data sample. Similar work
for the month of January has been accepted for a Southern Africa Telecommunication
Networks and Applications Conference (SATNAC) and can be found in (Chindipha and
Irwin, 2021). The CI findings from this paper have been appended in Appendix F.
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5.5.1 CI for Parametric Bootstrapping Simulation

To ease understanding of the results in this section and Section 5.5.2, consider CI as
a range of values defined by an upper and lower bound, with the upper bound being
above the statistical mean of the sample under study and lower bound being below the
statistic’s mean of the same population. The CI is likely to contain an unknown population
parameter being evaluated or examined. This study identified mean as its population
parameter because it is an unbiased estimate of the corresponding population parameters
(Hesterberg, 2015; Efron and Hastie, 2016). Thus the true population parameter of this
study is the actual value of the mean that has been computed from the sample being
studied. The likelihood of finding this unknown mean in any sample under study is
defined by the level of confidence used to compute the CI. Confidence level refers to
the percentage of probability or certainty that the CI would contain the true population
parameter when the reader draws a random sample many times.

With statistics, especially probability, there is always a possibility that the observed (or
computed) interval may overestimate or underestimate the true mean value, hence the
need to accommodate the level of certainty i.e. confidence level (which is similar to a
probability) (Efron, 1992; Efron and Hastie, 2016). So if a CI for an unknown population
mean is computed at 95% confidence level, what this means is that the 95% CI is the
likely range of the true, unknown mean of the population under study (Hesterberg, 2015).
In other words, there is a 95% probability that the CI will contain the true population
mean.

A researcher cannot work with all the samples under study. As such, it becomes practical
to work with bootstrapping to simulate all possible ranges of values in order to accom-
modate all values in the actual population should the values in a sample change. This
maximises all possible values accommodated in each sample. It is vital to acknowledge
that the CI does not in any way exhibit the variability in the unknown parameter. What
it rather does is portray the amount of random errors in the sample and provide a range
of values that are likely to include the unknown parameter (Dixon, 2006; Akter, 2014).
With this knowledge, the study will now present its findings.

Tables 5.1, 5.2 and 5.3 show the CI levels at which CI was computed and the number
of unique DSTIP addresses contained in each parametric bootstrap sample. These results
were computed from parametric bootstrapping for network telescopes 146/8, 196-A/8
and 155/8. Note that in each of the bootstrap samples, the number of unique DSTIP
is representative of the size of the network telescope. A 146/8 - /e26 bootstrap sample
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means that it has 64 unique DSTIP addresses and as such, it is a network telescope that
can accommodate 64 unique DSTIP addresses. In all of these tables, as the confidence
levels increased, the CI range increased meaning that the user gets more range of possible
values from which to identify how many unique SRCIP addresses, on average, one could
get if the user bootstraps the DSTIP addresses available in their network telescope. A
bootstrap sample computed at a narrow CI range of 80% CI level means that there is a
high likelihood of missing out on the actual number of unique SRCIP addresses, hence
given a lower CI level.

Table 5.1: 146/8: CI for No. of Unique SRCIP/hour [Jan - Mar]

CI Level
Bootstrap sample 80% 90% 95% 99%

146/8 - /e24 [509 - 519] [508 - 520] [507 - 521] [505 - 523]
146/8 - /e25 [255 - 260] [254 - 261] [254 - 261] [253 - 262]
146/8 - /e26 [130 - 132] [129 - 133] [129 - 133] [128 - 134]
146/8 - /e27 [67 - 68] [66 - 68] [66 - 69] [66 - 69]
146/8 - /e28 [33 - 34] [ 33 - 34] [33 - 34 ] [33 - 34]

Table 5.2: 196-A/8: CI for No. of Unique SRCIP/hour [Jan - Mar]

CI Level
Dataset 80% 90% 95% 99%

196-A/8 - /e24 [573 - 583] [571 - 585] [569 - 586] [567 - 589]
196-A/8 - /e25 [291 - 296] [291 - 297] [289 - 298] [288 - 299]
196-A/8 - /e26 [147 - 150] [147 - 151] [147 - 151] [146 - 152]
196-A/8 - /e27 [72 - 74] [72 - 74] [72 - 75] [72 - 75]
196-A/8 - /e28 [37 - 38] [37 - 39] [37 - 39] [37 - 39]

Table 5.3: 155/8: CI for No. of Unique SRCIP/hour [Jan - Mar]

CI Level
Dataset 80% 90% 95% 99%

155/8 - /e24 [522 - 532] [521 - 533] [520 - 534] [517 - 537]
155/8 - /e25 [261 - 266] [260 - 266] [259 - 267] [258 - 268]
155/8 - /e26 [134 - 136] [133 - 137] [133 - 137] [132 - 138]
155/8 - /e27 [67 - 68] [67 - 69] [66 - 69] [66 - 69]
155/8 - /e28 [34 - 35 ] [34 - 35 ] [34 - 35] [34 -35]
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As the confidence level moves from 80% CI towards 99% CI, the range gets wider, offering
more possible value from which the average number of unique sources contained within
the given subnet equivalent could contain. In addition to this, note that as the number of
unique DSTIP contained in each bootstrap sample decreases (for instance moving from
146/8 - /e24 - 146/8 - /e28), the average number of unique SRCIP observed per
hour decreases as well. This is a direct result of 146/8 - /e28 containing fewer DSTIP
addresses, which in turn receive fewer unique SRCIP addresses per hour. The intervals
herein are not computed per DSTIP but rather per hour, as a time series analysis. This,
in turn, lowers the overall mean as smaller network telescopes have been known to collect
less threat intelligence data than larger network telescopes. The only key question not
addressed is; what is the difference, in terms of data collected, when these smaller network
telescopes are compared against the larger network telescopes?

This chapter answers this question in part by offering quantitative values that one should
expect given the size of the samples a user is working with. In Tables 5.1, looking at
80% CI for Network telescope 146/8, one can observe that the average number of unique
SRCIP addresses has declined from the range of [573 - 583] in 146/8 - /e24 to [37 - 38]
in 146/8 - /e28. An 80% confidence of a [37 - 38] CI simply means that there is an 80%
chance that the confidence interval of [37 - 38] contains the true population mean. i.e. the
real mean of an actual sample. So if a user is using a network telescope with 16 unique
DSTIP addresses that are randomly sampled, the user can be 80% certain that within
every hour that the network telescope is being used, the 16 DSTIP addresses being used
will collect an average number of unique SRCIP that can range between 38 to 39.

The interpretation of CI presented in the preceding paragraph applies to all the boot-
strap samples in Tables 5.1, 5.2 and 5.3. The remaining percentages, 10% for example
when looking at 90% CI, acknowledge that during computation of the CI there is a 10%
likelihood that the actual population parameter understudy could fall outside the interval
being computed. This is the case because CI computation acknowledges the likelihood of
the actual population parameter not being accurately computed but it attaches the odds
of this happening. CI essentially tells the researcher how well one has determined the
mean of the sample that has been bootstrapped.

In addition to this, the interval observed within each sample declines as the sample sizes
get smaller. 146/8 - /e24 has wider interval from which the potential average number of
unique SRCIP addresses can be identified when compared to 146/8 - /e28. This is the
case because there is less variation in smaller samples as compared to large samples. As
the confidence level increases from 80% to 99%, the CI also increases. This observation
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is true for Tables 5.2 and 5.3 as well. What this essentially means is that accuracy
of identifying the true population mean is better with high confidence levels and with
large bootstrap samples. i.e. large samples are still better than smaller samples. This is
because their CIs are broader, offering a high likelihood. The dimension that this study
adds to this knowledge is that with CI computed, the proportions are known i.e. one can
quantify how the baseline differs from the samples using the proportion of the intervals.
What is also true in all these tables is how many unique SRCIP, on average, one would get
in each sample. With this benchmark, it is now easy to compute the proportions based
on the CIs computed.

5.5.2 CI for Non-Parametric Bootstrapping Simulation

Table 5.4: 146/8: CI for No. of Unique SRCIP/hour [Jan - Mar]

CI Level
Bootstrap Sample 80% 90% 95% 99%

146/8 - /e24 [471 - 475] [471 - 476] [470 - 476] [469 - 477]
146/8 - /e25 [237 - 239] [236 - 239] [236 - 240] [236 - 240]
146/8 - /e26 [119 - 120] [119 - 120] [119 - 121] [118 - 121]
146/8 - /e27 [60] [59 - 60] [59 - 60] [59 - 61]
146/8 - /e28 [29 - 30] [29 - 30] [29 - 30] [29 - 30]

Table 5.5: 196-A/8: CI for No. of Unique SRCIP/hour [Jan - Mar]

CI Level
Bootstrap Sample 80% 90% 95% 99%
196-A/8 - /e24 [510 - 515] [509 - 515] [508 - 516] [507 - 517]
196-A/8 - /e25 [258 - 260] [258 - 260] [257 - 261] [256 - 262]
196-A/8 - /e26 [130 - 131] [129 - 131] [129 - 131] [129 - 132]
196-A/8 - /e27 [64 - 65] [64 - 65] [64 - 65] [63 - 65]
196-A/8 - /e28 [32 -33] [ 32 -33] [32 -33 ] [32 -33]

Table 5.6: 155/8: CI for No. of Unique SRCIP/hour [Jan - Mar]

CI Level
Bootstrap Sample 80% 90% 95% 99%

155/8 - /e24 [486 - 490] [485 - 491] [485 - 492] [484 - 493]
155/8 - /e25 [243 - 245] [242 - 245] [242 - 245] [242 - 246]
155/8 - /e26 [123 - 124] [122 - 124] [122 - 124] [122 - 124]
155/8 - /e27 [61] [61 -62] [61 -62] [60 -62]
155/8 - /e28 [30 -31] [30 -31 ] [ 30 -31] [ 30 -31]
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Tables 5.4, 5.5 and 5.6 show results that were computed from non-parametric boot-
strapping for network telescopes 146/8, 196-A/8 and 155/8. The interpretation of the
results is the same, but, this section will mostly point out how parametric bootstrapping
findings relate to non-parametric bootstrapping. It will also focus on those observations
only found in non-parametric bootstrapping. One major difference observed in the non-
parametric bootstrap samples is that the average number of unique SRCIP addresses
observed per hour has declined, especially for /e24 - /e26. This is something that will
be explored more in Section 5.5.4. The lower subnet equivalents do not show a major
change in the average number of unique SRCIP observed per hour. This essentially is
communicating that smaller subnet equivalents tend to show results that are similar ir-
respective of the bootstrapping technique used. A look at 146/8 - /e27 and 155/8 -
/e27 in Tables 5.4 and 5.6 reveal that there is no range of values provided, it is just a
value computed from it. The interpretation, however, remains the same i.e. the average
number of unique SRCIP addresses observed at 80% CI is fixed at 60 and 59 respectively.

This level of certainty leaves a 20% chance of the true mean not being the identified
value. It also offers less confidence in the findings of such a value since there is no
variation to work with. On the other hand, at 99% CI, there is a range of values that
does accommodate variation and thus offers more confidence in such a spectrum. The
observation made in Section 5.5.1 also applies in non-parametric bootstrapping i.e. as
subnet equivalent size increased, the CI range increased as well, thus smaller samples do
not offer more room for variability, which in turn offer less confidence when compared to
larger samples. The same observation is made as the level of confidence increased from
80% to 99% on different samples.

Secondly, as in parametric bootstrap samples, large subnet equivalents show more unique
SRCIP addresses observed per hour as compared to smaller subnet equivalents. This was
expected. But what was not known is the proportion that exists between the smaller
subnet equivalents and the large subnet equivalents. A look at Tables 5.1 - 5.6 shows
that there are very slight variations between 95% and 99% CI level. The study thus
recommends the use of the data at least at 95% CI level because the variations between
95% and 99% CI level are not big. In this way, there will be a high chance of reflecting
on the reflections observed in the baseline data. A 95% or 99% CI for any given sample
size means that the data user is 95% or 99% confident that each of the allocated samples
will contain a specific average amount of unique SRCIP addresses in the available pool of
DSTIP addresses. Confident to a point of knowing how much is not accounted for if the
number of unique SRCIP observed is anything lower or higher than the indicated interval
present in their network telescope. The number of unique SRCIP addresses observed in
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the DSTIP addresses of the host’s network telescope is going to be different based on the
duration of observation and the size of the network telescope ‘lens’.

Another profound observation confirmed in this study was that bootstrapping balanced
the scales that come with sampling in that, whether the sample is randomly sampled
or sequentially sampled, the proportionality of the unique SRCIP addresses between a
subnet and its subnet equivalent is similar (more on sequential sampling in Chapter 6).
When the data was sequentially sampled to select DSTIP addresses, the representation
of the unique SRCIP addresses found in a specific subnet was almost proportional, i.e.
the number of unique SRCIP addresses observed in a specific subnet was proportionally
approximately the same. No subnet of the same size contained more unique SRCIP
addresses than its counterparts. The same observation is seen in this chapter when looking
at CI i.e. as the sample size of DSTIP addresses taken from the /24 IPv4 baseline data to
create a bootstrap sample increased, the CI increased by an equivalent proportion. Each
time the sample size doubled, almost the same proportion was reflected in the CI. What
this means is that whether the sample is randomly sampled or sequentially sampled, the
proportionality of the unique SRCIP addresses between a subnet and its subnet equivalent
is similar. Worth remembering is that bootstrapping does not work with sequential or
sequential samples, however, the observation had to bring the scenario to complete the
analysis on the data. This also shows how the analyses in this study are related to each
other.

5.5.3 CI for Monthly Bootstrap Simulations

The study opted to extend the analysis by moving from quarterly observation to monthly
observation. This is the case because the study had the hypothesis that the number of
unique SRCIP addresses observed in the DSTIP addresses of the host’s network telescope
ought to be different based on the duration of observation and the size of the network
telescope ‘lens’. Thus during the analysis, a long observation period within the same
month offered a high volume of unique SRCIPs contained in the pool of unique DSTIP
addresses observed. In our study, a 30 minute observation interval showed few unique
SRCIP addresses as compared to hourly observation. A day’s observation offered more
unique SRCIP observation as compared to an hourly observation. However, this pattern
did not proceed when the study moved its observation to accommodate a month’s worth
of observation.

One month worth of observation showed more unique SRCIP observed per hour as com-
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pared to three months worth of observation. This is shown in Tables 5.7 - 5.12. Another
view is when the study compared individual datasets. For instance, Tables 5.1 and 5.4
show CI for the average number of unique SRCIP addresses observed from January to
March for network telescope 148/8. This is for both parametric and non-parametric.
On the other hand, Tables 5.7 and 5.10 show the average number of SRCIP addresses
observed in the same network telescope but this time only for the month of March. Note
how the average number of unique SRCIP observed per hour has increased from what was
seen in Tables 5.1 and 5.4 as compared to what we have observed in Tables 5.7 and
5.10.

Table 5.7: 146/8-032021: CI for No. of Unique SRCIP/hour [Parametric]

CI Level
Bootstrap Sample 80% 90% 95% 99%

146/8 - e24 [718 - 734] [716 - 737] [713 - 739] [711 - 744]
146/8 - e25 [358 - 367] [357 - 368] [356 - 370] [354 - 371]
146/8 - e26 [180 - 185] [180 - 185] [181 - 186] [177 - 187]
146/8 - e27 [89 - 92] [89 - 93] [89 - 93] [88 - 93]
146/8 - /e28 [44 -45] [44 -46 ] [43 - 46] [43 - 46]

Table 5.8: 155/8-032021: CI for No. of Unique SRCIP/hour [Parametric]

CI Level
Bootstrap Sample 80% 90% 95% 99%

155/8 - /e24 [748 - 767] [746 - 770] [743 - 773] [737 - 775]
155/8 - /e25 [369 - 378] [368 - 379] [366 - 380] [364 - 383]
155/8 - /e26 [186 - 190] [185 - 191] [183 - 190] [183 - 192]
155/8 - /e27 [93 - 96] [93 - 96] [92 - 96] [92 - 98]
155/8 - /e28 [47 -49] [47 -49] [47 -50] [47 -50]

Table 5.9: 196-A/8-032021: CI for No. of Unique SRCIP/hour [Parametric]

CI Level
Bootstrap Sample 80% 90% 95% 99%
196-A/8 - /e24 [789 - 807] [786 - 811] [782 - 813] [778 - 819]
196-A/8 - /e25 [395 - 405] [393 - 406] [392 - 407] [390 - 409]
196-A/8 - /e26 [195 - 200] [194 - 201] [193 - 202] [192 - 202]
196-A/8 - /e27 [96 - 99] [96 - 100] [95 - 100] [95 - 100]
196-A/8 - /e28 [49 -51] [49 -51] [49 -51] [48 - 52]

This drop is in the number of unique SRCIP addresses observed in that time frame. The
reason for such a drop is primarily due to the elimination of the redundant number of
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unique SRCIP addresses observed, that have appeared in all three months. Thus by the
time observation gets to the month of February or March in our three months time frame,
some of the unique SRCIPs would have been seen already in January. If such unique
SRCIP addresses are observed again in the subsequent month(s), they would not account
as unique SRCIPs anymore. However, if each month is observed independently, as was
the case with March, then those unique SRCIP addresses are accounted for, just for that
month alone, hence the high volume in the average number of unique SRCIP addresses
in Tables 5.7 - 5.12 as compared to those observed in Tables 5.1 - 5.6.

Table 5.10: 146/8-032021: CI for No. of Unique SRCIP/hour [Non Parametric]

CI Level
Bootstrap Sample 80% 90% 95% 99%

146/8 - /e24 [571 - 582] [569 - 583] [568 - 585] [565 - 588]
146/8 - /e25 [286 - 292] [285 - 293] [285 - 293] [284 - 295]
146/8 - /e26 [144 - 146] [143 - 147] [142 - 148] [142 - 148]
146/8 - /e27 [71 - 73] [71 - 73] [71 - 73] [71 - 74]
146/8 - /e28 [35 ] [35 -36] [34 -36 ] [34 -36]

Table 5.11: 155/8-032021: CI for No. of Unique SRCIP/hour [Non Parametric]

CI Level
Bootstrap Sample 80% 90% 95% 99%

155/8 - /e24 [599 - 610] [597 - 612] [595 - 614] [594 - 617]
155/8 - /e25 [295 - 301] [295 - 302] [293 - 302] [292 - 303]
155/8 - /e26 [148 - 151] [148 - 152] [147 - 153] [147 - 153]
155/8 - /e27 [74 - 75] [74 - 76] [73 - 76] [73 - 76]
155/8 - /e28 [37 -38] [37 -38] [36 -38] [37 -39]

Table 5.12: 196-A/8-032021: CI for No. of Unique SRCIP/hour [Non Parametric]

CI Level
Bootstrap Sample 80% 90% 95% 99%
196-A/8 - /e24 [607 - 620] [604 - 622] [603 - 624] [601 - 626]
196-A/8 - /e25 [306 - 312] [305 - 313] [304 - 314] [303 - 316]
196-A/8 - /e26 [153 - 156] [152 - 156] [151 - 157] [151 - 157]
196-A/8 - /e27 [76 - 77] [75 - 78] [75 - 78] [75 - 78]
196-A/8 - /e28 [49 -51] [49 -51] [49 -51 ] [48 -52]
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5.5.4 Summary Statistics Non-Parametric Bootstrap Samples

Another set of experiments that the study did was to observe the variations that exist
between the bootstrap samples and the baseline data when it comes to descriptive statis-
tics. The study primarily focused on the Standard error of mean and the mean of both
the baseline dataset and the bootstrap samples. Standard Error of mean (SEM) shows
how accurate the estimate of the mean is likely to be, i.e. SEM measures how much
discrepancy there is likely to be in a sample’s mean compared to the population mean
(Seabold and Perktold, 2010). SEM acknowledges that each diagnostic test has an in-
herent predictable amount of errors which always comes with the tests being carried out.
Thus SEM provides a statement of probability about the difference between the mean of
the population and the mean of the sample. All the results in this section are from the
TCP dataset.

Table 5.13: Summary Statistics for 146/8 - [Jan - Mar] - No. of SRCIP/hour

Bootstrap Sample Baseline Mean Bootstrap Mean Baseline SEM Bootstrap SEM
146/8 - /e24 473 474 1.62 1.63
146/8 - /e25 238 238 0.85 0.86
146/8 - /e26 120 120 0.48 0.49
146/8 - /e27 60 60 0.29 0.29
146/8 - /e28 30 30 0.16 0.17

Table 5.14: Summary Statistics for 196-A/8 - [Jan - Mar] - No. of SRCIP/hour

Bootstrap Sample Baseline Mean Bootstrap Mean Baseline SEM Bootstrap SEM
196-A/8 - /e24 512 513 1.96 1.96
196-A/8 - /e25 259 260 1.03 1.03
196-A/8 - /e26 130 131 0.56 0.55
196-A/8 - /e27 64 65 0.31 0.30
196-A/8 - /e28 40 40 0.46 0.47

Table 5.15: Summary Statistics for 155/8 - [Jan - Mar] - No. of SRCIP/hour

Bootstrap Sample Baseline Mean Bootstrap Mean Baseline SEM Bootstrap SEM
155/8 - /e24 488 489 1.70 1.71
155/8 - /e25 244 244 0.87 0.87
155/8 - /e26 123 124 0.48 0.49
155/8 - /e27 61 62 0.27 0.28
155/8 - /e28 31 30 0.17 0.17
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Table 5.16: Summary Statistics for 146/8-032021 - No. of SRCIP/hour

Bootstrap Sample Baseline Mean Bootstrap Mean Baseline SEM Bootstrap SEM
146/8 - /e24 576 577 4.32 4.33
146/8 - /e25 289 290 2.2 2.2
146/8 - /e26 145 145 1.14 1.15
146/8 - /e27 72 72 0.62 0.62
146/8 - /e28 35 36 0.33 0.34

Table 5.17: Summary Statistics for 196-A/8-032021 - No. of SRCIP/hour

Bootstrap Sample Baseline Mean Bootstrap Mean Baseline SEM Bootstrap SEM
196-A/8 - /e24 613 614 5.11 5.11
196-A/8 - /e25 309 310 2.57 2.57
196-A/8 - /e26 149 155 1.29 1.30
196-A/8 - /e27 77 77 0.68 0.68
196-A/8 - /e28 38 38 0.39 0.40

Table 5.18: Summary Statistics for 155/8-032021 - No. of SRCIP/hour

Bootstrap Sample Baseline Mean Bootstrap Mean Baseline SEM Bootstrap SEM
155/8 - /e24 604 605 4.62 4.63
155/8 - /e25 298 298 2.26 2.27
155/8 - /e26 150 150 1.17 1.18
155/8 - /e27 75 75 0.64 0.64
155/8 - /e28 37 38 0.38 0.38

In this study, the population is the baseline datasets for the month of March and the
baseline datasets collected from January to March. The samples are bootstrap samples
that are generated from the subnet equivalents. What SEM essentially does is to account
for these errors in the computation of CI to give a user an overview scenario of the times
when the true parameter of interest falls outside the intended CI range computed at a
specific level of certainty. Each table shows the average number of unique SRCIP per
hour.

For instance, if the study uses 80% CI level to compute CI for telescope 148/8 for January
to March, the SEM values will account for the 20% of the times that the average number
of unique SRCIP addresses observed on an hourly basis failed to be found in the given
CI range. This is to say one can either add or subtract from the lower value and the
upper values of our range to increase it to accommodate such errors in our computation.
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By adding and subtracting the SEM values to the computed CI range, it accounts for
errors that come inherently with the data and the process of computation, in our case,
bootstrapping. Small errors indicate small variations between the bootstrap sample and
the baseline data.

In view of this, the study acknowledged the need to have SEM computed for its boot-
strapping of IBR data as it computed CI at different CI levels. Tables 5.13 - 5.18 shows
how each bootstrap sample performed when compared to the baseline bootstrap. This
includes all observations made for both monthly observations as well as the three months
time period. As the subnet equivalent size taken from the baseline data to create a boot-
strap sample increased, SEM was increasing as well. This means that the bigger subnet
equivalent samples created better bootstrap samples which were more representative of
the overall baseline bootstrap, thus the SEM got closer to the baseline bootstrap.

Since the study was also looking for similarities between the baseline bootstrap samples
and the subnet equivalent bootstrap samples, then from each of the tables (Tables 5.13
- 5.18), note how the SEM for larger subnet equivalents formed bootstrap samples that
were more closer to the baseline bootstrap samples. This is important because in aiming
to reproduce the datasets, it is imperative that one accommodates the inherent errors
that come along with the data. With this in mind, it is safe to say that as the size of the
subnet equivalent increased, the bootstrap samples generated from it resembled more of
the baseline bootstrap sample. The values provided in each of these tables (Tables 5.13
- 5.18) show how the mean would vary with each given bootstrap sample with mean as
the population parameter of interest.

Bootstrap samples generated from larger subnet equivalents offered more variation of the
mean when SEM is accounted for i.e. bootstrap samples generated from large subnet
equivalents had bigger errors than those generated from smaller subnet equivalents. It is
for this reason that the CI range for larger samples shown in Tables 5.10 - 5.11 are bigger
than those in bootstrap samples generated from smaller subnet equivalents. Looking at
the mean shown in Tables 5.10 - 5.11 and the CI computed in Sections 5.5.1 and
5.5.2, IBR data has shown results that are more reflective of the baseline bootstrap
when working with non-parametric bootstrapping than parametric bootstrap. As such,
the study recommends the use of non-parametric bootstrapping for future studies. The
results are also consistent with what is expected in any inferential computation when it
comes to the value of SEM.
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5.6 Graphical Representation of Bootstrap Samples

In this section, the study focused on showing the graphical representation of the bootstrap
samples. Figures 5.4 - 5.6 show CI plots computed from bootstrap samples that were
generated from /e27, /e26 and /e25 subnet equivalents from a 146/8 network telescope.
The study opted to use one network telescope in all the subnet equivalents as a way of
representing how the CI would look like if it were to be presented graphically. Considering
that the results among all these network telescopes were similar, any random pick of the
network telescopes would work as a way of demonstrating the results graphically. More
plots regarding CI are appended in Appendix G.

(a) Non - Parametric Bootstrap Sample (b) Parametric Bootstrap Sample

Figure 5.4: 146/8-032021: /e27 Subnet equivalent Bootstrap Sample at 95% CI

(a) Non - Parametric Bootstrap Sample (b) Parametric Bootstrap Sample

Figure 5.5: 146/8-032021: /e26 Subnet equivalent Bootstrap Sample at 99% CI
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(a) Non - Parametric Bootstrap Sample (b) Parametric Bootstrap Sample

Figure 5.6: 146/8-032021: /e25 Subnet equivalent Bootstrap Sample at 95% CI

Each figure shows both parametric and non-parametric bootstrap plotted at 95% and 99%
CI levels. These two CI levels were chosen because they offered a better representation
of the average number of unique SRCIPs observed in the baseline datasets. Secondly, the
two CI levels offered slight variations between them and thus can be used interchangeably.
Lastly, they offered a wide range of CI from which the parameter of interest could be found
(in our case, the average number of unique SRCIP addresses observed on an hourly basis).

What is shown in each of these plots is a range of potential values computed at different CI
levels. Areas that look more concentrated than others show that most of the data points
are concentrated there. For instance, in Section 5.5 bootstrap samples were computed
from a /e27 subnet equivalent at 95% CI falls between [71 - 44] for non parametric
bootstrapping while for parametric bootstrapping it lies between [88 - 93]. A look at
Figure 5.4, shows that a majority of the data points fall within these ranges ([71 - 44] for
non-parametric and [88 - 93] for parametric). The dispersion that is seen outside of this
region goes to show that the other 5% could fall outside of the computed ranges of [71 -
44] and [88 - 93] as CI computation acknowledges the likelihood of the actual population
parameter could fall outside of this region. i.e. the bars seen outside of this range account
for the inherent errors that come with the data and bootstrap computation. Since CI gives
a range of plausible values for a population parameter for any given random dataset, then
from these two ranges one can safely say that they are 95% confident that the intervals
[71 - 44] and [88 - 93] captured the true mean of the number of unique SRCIP addresses
observed every hour within the /e27 subnet equivalent bootstrap samples. In other words,
this study is 95% confident that every hour that a network telescope that accommodates
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32 unique DSTIP addresses is used within this IP address block, the average number of
unique SRCIP addresses observed by those unique DSTIP addresses will lie between [71
- 44] for non-parametric and [88 - 93] for parametric respectively.

Using this basis, one can also extend for bootstrap samples that were computed from
larger subnet equivalent samples. For instance, Figure 5.5 shows a bootstrap sample
plot computed at 99% CI with a majority of the data points concentrated around the
range [142 - 148] for non-parametric bootstrap samples and [177 - 187] for parametric
bootstrap samples. This is to say that this study is 99% confident that the average amount
of unique SRCIP addresses registered per hour within a network telescope, configured
to accommodate 64 unique DSTIP addresses, lies within the range [142 - 148] for non-
parametric bootstrap samples. If more unique DSTIP addresses are added to the network,
let’s say 128 (See Figure 5.6), then with such values (coupled with the level of CI given),
it is easy to come up with the range with which the allocated network telescope would
be able to collect, on average, the number of unique SRCIP addresses registered on an
hourly basis. It was in the range of [285 - 293] for a bootstrap sample computed at 95%
CI for a subnet equivalent size of 128.

It is worth noting that these values are not always going to be the same for different
networks. The volume of the number of unique SRCIP addresses registered within the
network telescope is going to vary depending on the location of the network, the type of
threat targeting an organisation or surge of threats on the network, the nature of business
the organisation is involved in, and how persistent the threat actors are in getting into
an organisation’s network. However, the procedure followed here does not apply to every
network telescope irrespective of the aforementioned reasons. If followed thoroughly with
the appropriate CI levels, an organisation will be able to know with a certain degree of
confidence how many unique SRCIP addresses they should have had if they had configured
a bigger ‘lens’ network telescope.

Worth mentioning here is that the sizes of the subnet equivalents do not necessarily have to
be identical to well-known subnets. One can choose any random number of unique DSTIP
addresses and use that to compute what is missing in the reader’s network. For instance,
an organisation can compute for 100 unique DSTIP addresses, or 10, or 20. Whatever
value, the user will still be able to get the answers they need. Secondly, in this study, it was
observed that the average values of non-parametric bootstrapping resonated very well with
those observed in the baseline bootstrap sample. Thus the study recommends the use of
non-parametric bootstrapping over parametric bootstrapping, specifically because a user
has more control over the variables in non-parametric bootstrapping than in parametric
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bootstrapping. Note also that most of the non-parametric bootstrapping plots do follow
a normal distribution curve, an important feature that has to be taken into consideration
when computing CI.

5.7 Recommendations

This chapter has proven that bootstrapping can indeed be used to simulate IBR data
to fill in the void left by those who do not have adequate resources to afford larger
network telescopes. IBR data has shown results that were more reflective of the baseline
bootstrap when working with non-parametric bootstrapping than parametric bootstrap
thus the study recommends the use of non-parametric bootstrapping for future studies.
The study has also confirmed observations made by Hesterberg (2015) in his study as
mentioned in Section 3.4. The results are also consistent with what is expected in any
inferential computation when it comes to the value of SEM.

The study also recommends the use of the data at least at 95% CI level because the
variations between 95% and 99% CI level are not big, this way, there will be a high
chance of reflecting the reflections observed in the baseline data. A 95% or 99% CI for
any given sample size means that the data user is 95% or 99% confident that each of
the allocated sample will contain a specific average number of unique SRCIP addresses
in the available pool of DSTIP addresses. Confident to a point of knowing how much is
not accounted for if the number observed are anything lower or higher than the indicated
interval presented per network telescope size. The average number of unique SRCIP
addresses observed in the DSTIP addresses of the host’s network telescope is going to
be different based on the duration of observation and the size of the network telescope.
However, the proportions of the averages is going to be roughly the same depending on
the SEM value of each sample. Thus given the % range of a CI per bootstrap sample,
one should be able to compute the average number of unique SRCIP addresses observed
in the DSTIP addresses of the host’s network telescope. Tables 5.19 and 5.20 presents
the thesis’s artefact to be used as guide in computing the averages per given sample at
95% CI.

The SEM in Tables 5.19 and 5.20 presents the margin of error in the computation of the
mean for each bootstrap sample. These were averaged for monthly and quarterly datasets
to ensure fair representation. If one can compute the margin of error in their IBR data the
CI range will be computed. To explain the tables, let us use bootstrap sample size 128
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- /e25 in Table 5.19. It shows the range from 47.83% to 52.51% that is, 50.17% plus
or minus 2.34 percentage points. The researchers are confident that if another network
telescope is used to collect average number of unique SRCIP using bootstrap sample size
128 - /e25 on monthly basis, then 95% of the time - or 19 times out of 20 - the findings
would fall in this range. Using the percentage range gives the user the actual range of
average number of unique SRCIP observed per hour for the sizes presented in Tables
5.19 and 5.20.

Longer observation period offer more precision in the CI range as the SEM is lower in
quarterly analysis than in monthly datasets (see Tables 5.19 and 5.20). In addition
to this longer observation periods offer high volume of unique SRCIPs contained in the
pool of unique DSTIP addresses observed. This is to say that if a 30 minute observation
interval showed a few unique SRCIP addresses as compared to hourly observation, then a
monthly interval would show more unique sources than a weekly observation. The study
recommends observation of longer periods as that accommodates more unique SRCIP per
sample. Large network telescopes still contain more unique SRCIP addresses as compared
to small ones so a network telescope with 32 DSTIP addresses will show less unique SRCIP
addresses than a 128 network telescope. Thus, the study recommends bootstrapping larger
samples as compared to smaller because bigger samples created better bootstrap samples
which were more representative of the overall baseline bootstrap, thus the SEM got closer
to the baseline bootstrap. In the context of this research, larger network telescopes showed
more unique SRCIPs per give pool of DSTIP than smaller ones.

Table 5.19: Monthly Summary Table for CI in Percentage at 95% CI

Bootstrap Size Avg. Bootstrap Mean % Average SEM % CI
256 - /e24 100.00 4.68 [95.32 - 104.68]
128 - /e25 50.17 2.34 [47.83 - 52.51]
64 - /e26 25.17 1.20 [23.97 - 26.37]
32 - /e27 12.50 0.64 [11.86 - 13.14]
16 - /e28 6.21 0.37 [5.75 - 6.49]

Table 5.20: Quarterly Summary Table for CI in Percentage at 95% CI

Bootstrap Size Avg. Bootstrap Mean % Average SEM % CI
256 - /e24 100.00 1.76 [98.24 - 101.76]
128 - /e25 50.30 0.92 [49.38 - 51.22]
64 - /e26 25.45 0.51 [24.94 - 25.96]
32 - /e27 12.69 0.29 [12.40 - 12.98]
16 - /e28 6.78 0.27 [6.51 - 7.05]
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5.8 Summary

This chapter explored bootstrapping as a statistical technique that can be used to simulate
samples of IBR datasets with the aim of estimating the likelihood of finding missing unique
SRCIP addresses that are currently present within a subnet equivalent. This chapter
began by justifying why bootstrapping is needed for this study in Section 5.1. This
section outlines how bootstrapping fits the objectives of this study and how it can help
to attain these research goals. From here a need to define how the study will approach
bootstrapping in order to achieve its objectives was needed, thus a laid out plan of how
the study was conducted is explained in Section 5.2. This was immediately followed
by the techniques of bootstrapping that were used to process the data. It is in Section
5.3 that the two techniques of bootstrapping were used. More details about these two
techniques were presented in Section 3.2.

This chapter also looked at the relationship that exists between the number of unique
SRCIP and time. This relationship and its findings were presented in Section 5.4. From
here on the study aimed to establish the confidence levels associated with each bootstrap
sample. The study has proven that bootstrapping can indeed be used to simulate IBR
data to fill in the void left by those who do not have adequate resources to afford a
larger network telescope ‘lens’. These findings are presented in Section 5.5. The study
also presented a graphical representation of these CI computed and explained how they
relate to the tables presented. This is shown in Section 5.6. Lastly, IBR data has
shown results that were more reflective of the baseline bootstrap when working with non-
parametric bootstrapping than with parametric bootstrap. As such, the study presents
artefacts and recommendations to the reader in Section 5.7



6
Quantifying Variations in IBR Samples

This chapter focuses on the computation of the differences that exist between the base-
line datasets and their samples, be it random or sequential. The chapter builds on the
knowledge introduced and explained in Sections 3.8. Building on the work by Hyndman
and Koehler, the chapter begins by introducing the mathematical models that have been
derived to compute the differences that exist between baseline datasets and their samples
in Section 6.1. This is followed by the research approach that was used to pre-process
the data in Section 6.2. It is in this section that the two sampling techniques that were
used to sample IBR data are explained. This is immediately followed by an evaluation of
the derived models against MAPE, SMAPE, MAE and MASE in Section 6.3.

Having established a benchmark with which to work on, and having the models validated,
the study shifted its focus to assess the performance of the models on random and sequen-
tial datasets. This is shown in Section 6.4. Recommendations on DSTIP monitoring
and placement are presented in Section 6.5.This section led to the assessment of the
feasibility of sampling IBR data in Section 6.6. An analysis of the overall performance
of the models on IBR data is explained in Section 6.7. It was at this point that the
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study had to look at the strengths and limitations of the developed models. This is ex-
plained in Section 6.8. The impact of sampling on destination ports using information
retrieval techniques is explained in Section 6.9. Like in the preceding sections, this sec-
tion explores two case studies: monthly and quarterly analysis. The chapter closes with
a summary in Section 6.10. The practical applications of the models developed are
discussed further in Chapter 7.

6.1 Mathematical Models Developed for IBR Datasets

To have a clear understanding of how the models came about, the reader is required to un-
derstand the literature review presented in Section 3.9 which forms the core from which
all the mathematical models presented in this section are based. A clear understanding of
Section 3.9 is assumed when presenting the models found in this chapter. Three major
differences found between the models here and those developed by Hyndman and Koehler
(2006) lie in the usability of the model, the data required to use the model, and what
is being measured. Hyndman and Koehler (2006) designed MAPE, SMAPE, MAE, and
MASE models to measure the errors found in forecasting time series data. Thus the core
purpose of his models was forecasting, while on the other hand,the models presented in
this chapter are designed to measure differences that exist between data samples based on
a specified unit of standardisation. Standardisation is an integral element in the models
developed in this chapter without which the model becomes unusable or gives erroneous
results.

Secondly, Hyndman and Koehler’s models were specifically designed to work with time-
series data, hence the concept of forecasting which cannot happen without the data having
time stamps. On the other hand, the models in this chapter work with both time-series
data and data without a timestamp. However, the models require that the data samples
being compared have a series of data points and their order does not really matter. Lastly,
Hyndman and Koehler were more interested in the errors found between two or more time-
series while, in this case, the study was more interested in the representativeness of one
sample to the next. The focus was on how accurate can one sample compare to the
next. More specifically, how accurately can subnets and subnet equivalents represent the
baseline dataset from which they were drawn? The understanding of these differences will
help the reader to see how the models developed fit in this study. With this knowledge
and understanding, the study will present the models one at a time and show how they
are used here.
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6.1.1 Absolute Mean Accuracy Percentage Score (AMAPS)

Absolute Mean Accuracy Percentage Score (AMAPS) is a measure of an average
absolute percentage score. AMAPS computes the level of accuracy (representativeness)
of a subnet or subnet equivalent data sample to the actual (baseline) dataset as a score
measured in percentage. It has to be absolute because this study was not interested in
the direction of the difference. As such, a negative value coming out of the computation
will negatively affect the score computed, hence the absolute mean. In all the cases, the
baseline data was from /24 IPv4 subnet values taken from all the network telescopes.
The subnets and subnet equivalents were taken from the same baseline dataset to form
comparable samples. In this study, subnets and subnet equivalents ranged from .128/25 to
.252/30 for subnets and /e25 to /e30 for subnet equivalents. This way, the study was able
to compute the gap that exists between the baseline study and the subnets and subnet
equivalents. For the remainder of this chapter that is how actual subnet (for sequential
sampling) and subnet equivalent (for random sampling) have been defined.

Let At and St denote the baseline and subnet equivalent sample values of the same
baseline at data point t respectively. If one is working with sequential sampling, St denote
subnet equivalent sample values of the same baseline at data point t respectively. Let a
and s denote the size of the baseline and subnet sample (respectively) being evaluated.
a and s are the values that a model user need to define in order to normalise the values
contained in At and St. t in all time-series data denotes time. If a researcher is working
with data that has no time stamps on it, t becomes the position of the data points within
the datasets that one is working with. Considering that the study was interested in the
accuracy score, a perfect score would be a one while a poor score will be a zero. Thus
to find the accuracy score, one will need to first compute the error found between the
baseline data sample and the subnet sample being investigated. The computer error will
then be subtracted from one. Since the score is measured in percentage, the value from
this computation has to be multiplied by 100. This is presented in Equation 6.1.

High values of AMAPS indicate a better representation of the subnet or subnet equivalent
with the baseline, i.e. the higher the absolute mean accuracy percentage score, the better
one’s sample is at representing the baseline dataset. The opposite of this score also applies,
low scores are indicative of poor representation of the subnet or subnet equivalent to
represent a baseline dataset. Thus high AMAPS values in our study are proof of how
the subnet (or subnet equivalent) under study is closer to the baseline dataset (/24 IPv4
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subnet). AMAPS is defined as:

AMAPS =

1−
 1

N

N∑
t=1

∣∣∣∣ (At

a

)
−
(

St

s

) ∣∣∣∣
At

a
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6.1.2 Symmetric Absolute Mean Accuracy Percentage Score

Symmetric Absolute Mean Accuracy Percentage Score (SAMAPS) is an al-
ternative to AMAPS when there is zero or near-zero demand for items as expressed by
Hyndman and Koehler in their original model of SMAPE. Let At and St denote the
baseline and subnet equivalent sample values of the same baseline at data point t respec-
tively. If one is working with sequential sampling, St denote subnet sample values of the
same baseline at data point t respectively. Let a and s denote the size of the baseline
and subnet samples being evaluated. a and s are the values that the model user needs to
define in order to normalise the values contained in At and St. In contrast to AMAPS,
SAMAPS has both a lower bound and an upper bound. This symmetrical nature of
SAMAPS gives it a higher level of accuracy in its computational value than AMAPS.
Just like SMAPE delimits to an error rate of 200% in order to reduce the influence of
low volume items (Kim and Kim, 2016; Franses, 2016), so does SAMAPS. Low volume
items are problematic because they could otherwise have infinitely high error rates that
skew the overall error rate (Hyndman and Koehler, 2006), which in turn affect the level
of accuracy.

The interpretation is similar to that of AMAPS since they are all percentage-based. Thus
to find the accuracy score, one will need to first compute the error found between the
baseline data sample and the subnet sample being investigated, and then subtract that
value from one. Since the score is measured in percentage, the value from this computation
has to be multiplied by 100. Thus, SAMAPS is computed by computing the error from
the normalised baseline data sample of /24 IPv4 minus the normalised values of subnet
and subnet equivalent values divided by the sum of baseline value and subnet equivalent
values as expressed in Equation 6.2:
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6.1.3 Standardised Mean Absolute Error (SMAE)

Standardised Mean Absolute Error (SMAE) measures the average magnitude of
the errors between normalised baseline data samples of /24 IPv4 and the normalised
values of subnet and subnet equivalent values that have equal weight just as expressed by
(Varouchakis and Hristopulos, 2013). The key major difference here is the standardisation
which is critical as the study will later show in results. In this expression, like in Equation
6.2, At and St denote the baseline and subnet equivalent sample values of the same
baseline at data point trespectively. Let a and s denote the size of the baseline and subnet
samples being evaluated. a and s are the values that a model user needs to define in
order to normalise the values contained in At and St. When measuring the magnitude of
errors, SMAE does not consider the direction of the set pairs under observation, hence the
absolute (| |) expression added to the mathematical model, just as explained by Willmott
and Matsuura (2005). SMAE has negatively-oriented scores, meaning that lower values
are better than higher values. The smaller the standardised mean absolute error, the
closer the subnet (or subnet equivalent) under study is to the baseline dataset (/24 IPv4
subnet). Thus smaller values in our study are proof of how the subnet sample is closer to
/24 IPv4 subnet. Like in AMAPS and SAMAPS, if a researcher is working with data that
has no time stamps on it, t becomes the position of the data points within the datasets
that one is working with. SMAE is mathematically expressed as Equation 6.3:

SMAE =
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6.1.4 Standardised Mean Absolute Scaled Error (SMASE)

Standardised Mean Absolute Scaled Error (SMASE) is unlike the other two quan-
tifying techniques, SMASE uses a scaling error based technique instead of a relative mea-
sure just as expressed in MASE by Hyndman and Koehler (2006). SMASE can only be
computed when there are multiple data samples (time series or otherwise) to compute
against each other. SMASE uses a scale based on the in-sample SMAE as shown in
Equation 6.4, which is independent of the scale of the data. The scale makes SMASE
less sensitive to outliers and easy to interpret and use in the same lines as SAMAPS or
AMAPS. According to Hyndman and Koehler, a scaled error is less than one if it arises
from a better forecast than the average one-step naive forecast computed in-sample. On
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the other hand, if the forecast is worse than the average one-step naive forecast computed
in-sample, then it is greater than one. Bringing it into our context, if the sample drawn
from /24 IPv4 subnet is better aligned to the original /24 IPv4, then the value will be less
than one. Also, if there are significant differences, then the value will be higher than one.
Thus, values of SMASE that are less than one are ideal to assess the representativeness
of subnet or subnet equivalent in the place of a baseline dataset. In this expression, like
in Equation 6.2, At and St denote the baseline and subnet equivalent sample values of
the same baseline at data point t respectively. Let a and s denote the size of the baseline
and subnet samples being evaluated. a and s are the values that a model user needs
to define in order to normalise the values contained in At and St. In equation 6.5,
SMAEin-sample, naive is the standardised mean absolute error produced by a naive subnet
sample.

SMAEin−sample,naive =
1
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MMASE =
SMAE

SMAEin−sample,naive

(6.5)

6.2 Research Approach in Data Analysis

This study did experiments on random and sequential datasets. Figures 6.1, 6.2 and
6.3 show the data summary of the number of unique SRCIP addresses present in both
the sequential and random data samples compared per subnet and subnet equivalent. All
of these box plots are normalised for comparability i.e. each data from the subnet and
subnet equivalents was divided by its corresponding size before plotting. The raw box
plots (not normalised box plots) are found in Appendix H. This is for all three network
telescope datasets used in this study with their data spanning from January to March
2021. On each plot, Figures 6.1a, 6.2a and 6.3a, show the samples of random dataset
while Figures 6.1b, 6.2b and 6.3b show the sequential samples from the same datasets.
For random samples, 10 random draws were made for each sample size as explained in
Section 4.1.2. One the other hand, for sequential sampling one sample was taken for each
sample size as DSTIPs showed equitable distribution of unique SRCIPs. The reason for
this approach and the exploratory work is presented in Section 4.2.3.
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(a) Random Samples (b) Sequential Samples

Figure 6.1: 146/8 -[Jan - Mar]: Data Summary of Unique SRCIP addresses/Day

(a) Random Samples (b) Sequential Samples

Figure 6.2: 196-A/8 - [Jan - Mar]: Data Summary of Unique SRCIP addresses/Day

What is common in all of these three box plots is the presence of outliers, which are
indicative of the fact that the unique DSTIP addresses never received a uniform volume
of unique SRCIP addresses. If that was the case the outliers would not be present. When
it comes to the presence of outliers, there are no significant differences in each of the
samples despite the fact that they were sampled using two different techniques. The
DSTIP addresses that received the smallest amount of unique SRCIP addresses got as
low as 20 unique SRCIPs in a three months period while those that received the most got
as high as 187 unique SRCIPs. The sequential data were sampled based on the subnets
that are well defined in the IP address blocks.
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(a) Random Samples (b) Sequential Samples

Figure 6.3: 155/8 -[Jan - Mar]: Data Summary of Unique SRCIP addresses/Day

(a) January (b) [January - March]

Figure 6.4: 146/8 -10 Random Sample Draws of Unique SRCIP/Day for /e26 Subnet

Thus the default baseline dataset was a /24 subnet which contained all the 256 unique
DSTIP addresses. Following this was a .128/25 subnet sample which contained 128 unique
DSTIP addresses. This formed the first half of the unique DSTIP addresses in a /24 IPv4
subnet. Then the next sample contained 64 unique DSTIP addresses which formed a
.192/26 subnet. This formed the third quarter of the last octet. Table I.1 found in
Appendix I shows the sequential sampling net-mask used.
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Table 6.1: IP Address CIDR Network References for Sequential Sampling

subnet Subnet Mask
No. of

DSTIP

/24 255.255.255.0 256
/25 255.255.255.128 128
/26 255.255.255.192 64
/27 255.255.255.224 32
/28 255.255.255.240 16
/29 255.255.255.248 8
/30 255.255.255.252 4

Table 6.1 shows the subnet mask used, the number of allocated DSTIP addresses per
CIDR and the number of usable DSTIP addresses. It is the CIDR and Number of DSTIP
address columns that the reader should focus on to understand the sample sizes used in
both sequential and random sampling. On the other hand, the randomly sampled data
was categorised into subnet equivalents as explained in Section 4.1.2. To make a single
subnet equivalent, 10 randomly sampled draws were drawn from /24 net-block to come up
with a new dataset for evaluation. This applies to /e25 subnet equivalent to /e30 subnet
equivalent. An average of the unique SRCIPs per day in all the 10 samples was calculated
to have a well represented sample. 10 samples offered a good representation of what could
constitute a good a sample.

(a) February (b) [January - March]

Figure 6.5: 196-A/8 - 10 Random Sample Draws of Unique SRCIP/Day for /e26 Subnet
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(a) March (b) [January - March]

Figure 6.6: 155/8 - 10 Random Sample Draws of Unique SRCIP/Day for /e26 Subnet

What is critical from the box plots is to note the minimum and maximum values of the
average number of unique SRCIP addresses observed per day per DSTIP address, which is
shown on the Y-axis of the box plots. The minimum and the maximum values are shown
by the ends of the whiskers. The X-axis of each of the box plots (Figures 6.4, 6.5
and 6.6) show the number of sample names taken to come up with a randomly sampled
dataset. The average for each day from each of the 10 samples is what constituted the
final dataset from a specific subnet. Figures 6.4, 6.5 and 6.6, show how each of the
random draws compared to each other within a subnet equivalent.

From Figures 6.4, 6.5 and 6.6, the reader can tell that there are not significant differ-
ences within the samples belonging to the same subnet equivalent. Each of these sample
plots (Figures 6.4, 6.5 and 6.6) belong to /e26 subnet equivalent. The data contained in
each of the samples were normalised before computation and plotting to ensure that like
terms are measured and to prevent unnecessary inconsistencies that come with data that
is not normalised. More importantly, normalisation allows comparability of the samples
from different subnet equivalents.

Since the study was interested in the activities observed per DSTIP address, to normalise
the datasets, the number of unique SRCIP addresses observed on each day was divided
by the number of unique DSTIP addresses contained in their respective subnet equivalent
to come up with a normalised subnet equivalent. In other words, each subnet equivalent
dataset was normalised using an actual subnet size that matches with its subnet equivalent
to ensure comparability as explained in Section 6.1.
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(a) January (b) [January - March]

Figure 6.7: 146/8 -Time Series Plot of Unique SRCIP/DSTIP for /e27 Subnet

(a) February (b) [January - March]

Figure 6.8: 196-A/8 -Time Series Plot of Unique SRCIP/DSTIP for /e27 Subnet

For instance, to compare /24 IPv4 dataset (which contains 256 unique destination hosts)
with a /e27 subnet equivalent dataset (which contains 32 randomly sampled destination
hosts), one would need to divide the traffic contained in the destination hosts by their
respective subnet sizes. This is to say that since a /e27 subnet equivalent is expected to
have 32 IP addresses, then to come up with a normalised /e27 subnet equivalent dataset,
10 random draws were made from the /24 IPv4 addresses, where each draw contained 32
unique DSTIP addresses that were randomly sampled.
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(a) March (b) [January - March]

Figure 6.9: 155/8 -Time Series Plot of Unique SRCIP/DSTIP for /e27 Subnet

As mentioned earlier, for comparability purposes, each of the subnet equivalents was
normalised by the number of unique DSTIP addresses present in each dataset. This
approach ensured that calculations are done per individual DSTIP address. This applies
to all subnet equivalents used in this study. Figures 6.7, 6.8 and 6.9 show the effect on
normalisation on the 10 random samples from /e27 subnet equivalent when compared with
/24 net-block sample (represented in the legend as baseline). One can see from Figures
6.7, 6.8 and 6.9 how comparable each individual random sample is to the baseline sample
in a time series plot. The significance of normalisation (which will be used interchangeably
with standardisation) will prove vital to the computation of the variations that are present
between different subnets and subnet equivalents. Normalisation is key to the performance
of the developed models as one can only compare likeable terms.

To sum up this section, what is established here is that the variations of the ranges (the
difference between the minimum and the maximum value) are consistent in all the 10
samples of each random dataset. The data distribution of one sample is comparable to
the next samples, more so with /24 IPv4 subnet, within their respective datasets. This
just shows how similar the random samples are when they were drawn. There is also
a significant resemblance between random and sequential data samples when it comes
to displaying the number of unique SRCIP observed per day, even more so when the
computation was done within individual DSTIPs. This is later on shown in Section 6.3
where the accuracy scores are computed.
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6.3 Evaluation of the Developed Models Against MAPE,

SMAPE, MAE, MASE

This section demonstrates how AMAPS, SAMAPS, SMASE and SMAE were evaluated
against MAPE, SMAPE, MAE and MASE. Simultaneously, the study got to evaluate
how the proposed approach to derive the models has had an effect on well-known scores
of Root Mean Scaled Error (RMSE) and Mean Scaled Error (MSE). It is important to
recall that AMAPS, SAMAPS, SMASE and SMAE were derived from Hyndman and
Koehler’s forecasting models. Thus before going further, this study would like to clarify
a very critical point: there is nothing wrong with Hyndman and Koehler’s models in
forecasting time series data. However, as they are, the models are limited in that one
cannot use them to quantify differences that exist between data samples of the existing
time series, something that this research aimed to achieve. Thus, through the study and
analysis, it was derived that it is possible to optimise the models to accommodate, not
only time-series data, but also any other dataset that has a unit of measure with which to
standardise it. Thus, Hyndman and Koehler’s models have been included for two reasons:
first to show and acknowledge where the idea was derived, and, more importantly, to show
the variation that the developed models have brought to Hyndman and Koehler’s models
while working with the same data to achieve a different goal. It is from this benchmark
that this chapter should be understood. Practical applications of the models are found in
Chapter 7.

The study analysis of the model was split into two cases: IBR Data I (presented in
Section 6.3.1) was categorised as all the data that was collected within a month’s period
in all the three network telescopes while IBR Data II (presented in Section 6.3.2) is all
the data that was collected in a three months period. In this section, the study focused
more on how the derived models performed against MAPE, SMAPE, MAE, MASE and
how the scores in these models affect the values of RMSE and MSE. What this section
aims to achieve is to evaluate if the modifications made to the mathematical models
are significant to stand on their own. More importantly, this section will also show the
important role that normalisation does in the derived mathematical models and how
different the results would be if standardisation was not taken into account.
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6.3.1 Case Study: IBR Data I

Table 6.2: 146/8-032021: Accuracy Scores of Unique SRCIP/DSTIP

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Equiv Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

/e25 99.32 99.32 0.03 0.38 0.50 0.25
/e26 98.84 98.84 0.05 0.65 0.89 0.80
/e27 97.46 97.48 0.12 1.47 1.86 3.48
/e28 97.30 97.34 0.12 1.52 1.97 3.91
/e29 97.19 97.20 0.13 1.58 2.10 4.41
/e30 94.97 95.00 0.21 2.62 3.55 12.63

Table 6.3: 146/8-032021: Error Scores of Unique SRCIP/DSTIP

Subnet MAPE SMAPE MASE MAE RMSE MSE

Equiv Error(%) Error(%) Score Score Score Score

/24 0 0 0 0 0 0

/e25 50.05 66.75 2.47 7,568.78 8,098.23 6.55e+07
/e26 75.07 120.19 3.72 11,356.03 1,2157.77 1.47e+08
/e27 87.41 155.28 4.33 13,217.87 1,4145.88 2.00e+08
/e28 93.64 176.10 4.64 14,163.62 1,5160.90 2.29e+08
/e29 96.85 187.81 4.79 14,649.68 1,5682.15 2.45e+08
/e30 98.43 193.85 4.87 14,890.59 1,5941.07 2.54e+08

Table 6.4: 155/8-032021: Accuracy Scores of Unique SRCIP/DSTIP

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Equiv Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

/e25 98.30 98.33 0.10 0.94 1.47 2.16
/e26 98.01 97.96 0.12 1.16 1.88 3.54
/e27 97.46 97.43 0.15 1.47 1.94 3.78
/e28 96.16 96.12 0.23 2.21 2.65 7.07
/e29 94.84 94.72 0.31 2.94 3.80 14.48
/e30 93.87 93.86 0.36 3.37 4.15 17.27
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Table 6.5: 155/8-032021: Error Scores of Unique SRCIP/DSTIP

Subnet MAPE SMAPE MASE MAE RMSE MSE
Equiv Error(%) Error(%) Score Score Score Score

/24 0 0 0 0 0 0
/e25 49.33 65.50 3.15 7,463.28 7,808.65 6.09e+07
/e25 75.43 121.13 4.82 11,412.31 11,922.27 1.42e+08
/e27 87.62 155.95 5.60 13,256.84 13,849.39 1.91e+08
/e28 93.80 176.65 5.99 14,183.18 14,810.50 2.19e+08
/e29 96.93 188.12 6.20 14,661.90 15,313.30 2.34e+08
/e30 98.45 193.90 6.29 14,892.71 15,557.52 2.42e+08

Having detailed the research approach and more data characteristics in Section 6.2, the
study evaluated how the mathematical models presented in Equations 3.1, 3.2, 3.3
and 3.5 (shown in Section 3.9) performed on IBR data and compared their results to
the models presented in Equations 6.1, 6.2, 6.3 and 6.5. Noteworthy is how MAPE,
SMAPE, MAE and MASE have been used in this particular study to compute the margin
of error between /24 IPv4 and subsequent subnet equivalents . A reminder that /24 IPv4
represents the actual values while subsequent subnet equivalents represent the predicted
values. Thus, the score shown represents the errors between the baseline data and subnet
equivalents. The percentage error scores easily show how deviated a subnet equivalent is
from the baseline dataset (/24 net-block).

Tables 6.2 and 6.4 show the accuracy scores computed from AMAPS, SAMAPS, SMASE
and SMAE with data collected from datasets 146/8-032021 and 155/8-032021. For
representatives purposes, this research has used datasets from different months and dif-
ferent network telescopes. This is so as the study wanted to make sure that every dataset
described in Chapter 4 was used. With this approach, data gets to be viewed in its en-
tirety. This approach also helped to show that the results were independent of the month
or network telescope being evaluated since every dataset gets to be evaluated. Other
subsections of this chapter will present different datasets other than 146/8-032021 and
155/8-032021.

Tables 6.3 and 6.5 show the error score summaries computed from MAPE, SMAPE,
MASE, and MAE. All the data presented in this subsection is randomly sampled and
the results show mean scores of the 10 samples that were randomly drawn for each sub-
net equivalent. In this section, the baseline datasets are represented by /24 subnet for
all tables. Subsequent samples derived from these baseline datasets (referred to subnet
equivalents) are represented by /e25 subnet equivalent - /e30 subnet equivalent. Each
time a specific subnet equivalent is used, it will be mentioned along with the table name
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being referred to. This way it is easier to follow through. A perfect subnet equivalent that
mimics the baseline dataset is supposed to get 100% for AMAPS and SAMAPS with a
score of zero indicating the same for SMASE, SMAE, RMSE and MSE. As it can be seen
from Tables 6.2 and 6.4, only /24 subnets have perfect scores followed by /e25 subnet
equivalent.

The same naming convention was used when working with MAPE, SMAPE, MASE, and
MAE. This is shown in Tables 6.3 and 6.5 where baseline is represent by /24 subnet
while the subnet equivalents are represented by /e25 subnet equivalent to /e30 subnet
equivalent. A perfect subnet equivalent that mimics the baseline dataset is supposed to
get a 0% error score for MAPE, SMAPE, MASE and MAE. As it can be seen from Tables
6.3 and 6.5, only /24 subnets have perfect scores followed by /e25 subnet equivalents.
Without normalisation, it is clear to see why the errors got bigger when moving from
/e25 heading towards /e30. /e25 is a subnet equivalent that represents half of the unique
SRCIP addresses present in the 128 IP addresses it contains.

Every score computed from SMAPE, MASE and MAE were off the desired range and
these errors are not acceptable for any test. MASE and MAE accept ranges between
0 and 1 where 0 is the desired score while 1 is the maximum tolerable score. Without
standardisation, it can be seen in Tables 6.3 and 6.5 that all the subnet equivalents
are exceeding the limits set. When the study accommodated RMSE and MSE scores,
which are standard ways to measure the error of a model in predicting quantitative data
and computing how close a regression line is to a set of points, it helps to know how
these models are not meeting the needs for IBR data under study as they are extremely
large and show a serious deviation from the baseline. On the other hand, when the same
datasets were normalised (as shown Tables 6.2 and 6.4), the study observed better scores
for all of the metrics under study including RMSE and MSE, whose values are closer to
the baseline datasets in both tables.

High accuracy scores presented in Tables 6.2 and 6.4 show that any of these random
samples can be used for placement and the results collected per unique DSTIP will not
show significant differences. Smaller samples give lower scores as compared to larger ones,
indicating that large samples are still better than smaller samples. The only difference this
time is that such differences have a value added to it. When normalised, the differences
are masked. What the reader should be aiming for is for high accuracy scores. Thus, 98.30
% accuracy score is preferred as compared to 93.86 % i.e. a /e25 is better than a /e30.
More importantly, this section has shown that the developed models give better scores
than MAPE, SMAPE, MASE and MAE. The purpose of this section was to evaluate the



6.3. EVALUATION OF THE DEVELOPED MODELS AGAINST MAPE, SMAPE,
MAE, MASE 148

performance. When presenting the models in Section 6.1, acceptable scores for SMASE
and SMAE were supposed to be below one.

6.3.2 Case Study: IBR Data II

Having looked at monthly data to see how AMAPS, SAMAPS, SMASE and SMAE com-
pared against MAPE, SMAPE, MASE and MAE, the study opted to extend the duration
of observation to three months to see if it would have an impact on the computed scores.
This was done to ensure that the study does not make conclusions based on limited data.
Thus in this section, the tables contain accuracy scores for the total number of unique
SRCIP/DSTIP per sample. The data used was collected between January - March 2021.
Error scores fitting the same description are also presented.

The naming convention for the baseline and the subnet equivalent is the same as that
displayed in Section 6.3.1. One significant difference between the monthly datasets
and those found in Tables 6.6 - 6.9 is that the accuracy scores of AMAPS, SAMAPS,
SMASE and SMAE have slightly gone down, meaning the level of accuracy has declined
over the three months period. This decline in accuracy, however, is only reflected in /e25
subnet equivalent while there has been a rise in accuracy for /e30 subnet equivalent. On
the other hand, MAPE, SMAPE, MASE and MAE error scores have gone up, which in
turn means that the level of accuracy has gone down too. This is apparent in /e25 subnet
equivalent. This entails that the negative effect that the three months duration has had
on AMAPS, SAMAPS, SMASE and SMAE is also reflected in MAPE, SMAPE, MASE
and MAE error scores.

Table 6.6: 196-A/8-2021 - [Jan-Mar]: Accuracy Scores of Unique SRCIP/DSTIP

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Equiv Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

/e25 99.15 99.15 0.05 0.43 0.60 0.36
/e26 98.24 98.24 0.11 0.88 1.14 1.32
/e27 97.97 97.99 0.12 1.03 1.45 2.13
/e28 97.03 97.04 0.20 1.63 2.14 4.59
/e29 96.22 96.23 0.25 1.99 2.79 7.83
/e30 94.19 94.15 0.36 2.95 3.65 13.36
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Table 6.7: 196-A/8-2021 - [Jan - Mar]: Error Scores of Unique SRCIP/DSTIP

Subnet MAPE SMAPE MASE MAE RMSE MSE

Equiv Error(%) Error(%) Score Score Score Score

/24 0 0 0 0 0 0

/e25 50.15 66.95 3.35 6,861.61 7,329.86 5.37e+07
/e26 74.98 119.98 5.01 10,254.71 10,948.50 1.19e+08
/e27 87.43 155.36 5.84 11,959.72 12,773.25 1.63e+08
/e28 93.73 176.40 6.26 12,817.24 13,685.45 1.87e+08
/e29 96.86 187.84 6.47 13,245.78 14,139.57 1.99e+08
/e30 98.44 193.86 6.58 13,461.87 14,372.95 2.06e+08

Table 6.8: 146/8-2021 - [Jan - Mar]: Accuracy Scores of Unique SRCIP/DSTIP

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Equiv Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

/e25 99.15 99.15 0.06 0.40 0.51 0.26
/e26 98.62 98.62 0.10 0.65 0.86 0.74
/e27 97.44 97.47 0.19 1.24 1.59 2.54
/e28 96.70 96.74 0.25 1.57 2.12 4.53
/e29 96.41 96.40 0.26 1.68 2.10 4.42
/e30 94.49 94.48 0.40 2.54 3.23 10.45

Table 6.9: 146/8-2021 - [Jan - Mar]: Error Scores of Unique SRCIP/DSTIP

Subnet MAPE SMAPE MASE MAE RMSE MSE

Equiv Error(%) Error(%) Score Score Score Score

/24 0 0 0 0 0 0

/e25 50.08 66.81 3.93 6,298.67 6,608.88 4.36e+07
/e26 75.01 120.03 5.89 9,437.30 9,908.25 9.81e+07
/e27 87.37 155.17 6.85 10,990.59 11,535.05 1.33e+08
/e28 93.69 176.26 7.35 11,785.07 12,368.97 1.52e+08
/e29 96.88 187.91 7.60 12,187.20 12,791.77 1.63e+08
/e30 98.44 193.88 7.72 12,384.57 12,999.93 1.68e+08

As in Sections 6.3.1, AMAPS, SAMAPS, SMASE and SMAE scores for /e25 subnet
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equivalent offer the best results. The standard of interpretation in /24 where AMAPS
and SAMAPS give a perfect score of 100. On the other hand, SMASE and SMAE scores
need to be below 1. Using this interpretation, /e25 and /e26 give the best results for
consideration. This is primarily because the SMAE scores for /e25 and /e26 are below 1.
This is observed in Tables 6.6 and 6.8. In addition to this, the RMSE and MSE are the
closest to /24 subnet in these two tables. The high values of RMSE and MSE presented in
Tables 6.7 and 6.9 make results in these tables unacceptable. They are rejected because
the errors are too high. This is seen in MAPE, SMAPE, MASE and MAE scores as well.
The scores in Tables 6.7 and 6.9 present big margins from the ideal /24 scores. What is
significant about results in this section is that unlike in Sections 6.3.1, SMAE scores for
/e25 and /e26 are below 1. This means longer observation periods present better results
than short observation periods.

When the study compared the results found in Sections 6.3.1 and 6.3.2, it came to a
conclusion that normalising the baseline dataset and its subnet and subnet equivalents is
indeed significant in order to get accurate scores when comparing different samples. This
is the primary reason why AMAPS, SAMAPS, SMASE and SMAE were formulated. This
study has also shown the implications of the derivations that have been made on MAPE,
SMAPE, MASE and MAE mathematical models and why it was important to make them,
given the significant differences in the outputs. Thus from here onward, the study used
AMAPS, SAMAPS, SMASE and SMAE to further analyse and assess the differences that
exist between baseline datasets and their subnet and subnet equivalents. Accuracy (%)
is shortened to Acc. (%) in all the tables. The scores are reflecting the average number
of unique SRCIP observed per DSTIP.

6.4 Model Performance: Random vs. Sequential

So far the study has only focused on random IBR samples and how the samples performed
under the derived mathematical models. Having established the need and justified the
reasons for the developed models and changes made to Hyndman and Koehler (2006)
models in the preceding sections, the study changed its focus to the techniques used in
sampling the data. It established that the models are a good fit for IBR data, but there
was a need to assess which of the sampling techniques used in this study performed better
with the mathematical models. As with the preceding sections in this chapter, this section
is split into two where monthly IBR data is looked at first (represented as IBR Data I)
before looking at quarterly IBR data (represented as IBR Data II). This approach was
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used to evaluate the impact that time has had on the accuracy of the data samples. In
each of these dataset categories, the study looked at both random and sequential data
samples. This section also provides graphical representation in form of plots to support
the statistical values computed from AMAPS, SAMAPS, SMASE and SMAE models.

6.4.1 Case Study: IBR Data I

Tables 6.10, 6.12 and 6.14 show accuracy score summary for AMAPS, SAMAPS,
SMASE and SMAE models computed for 196-A/8 and 155/8 Network telescopes for
the months of January and February. These tables also show the value of two validation
errors from RMSE and MSE to support the results found in the derived models. The
baseline dataset for all randomly sampled data tables (Tables 6.10, 6.12 and 6.14)
for computing AMAPS, SAMAPS, SMASE, SMAE, RMSE and MSE is represent by /24
IPv4 subnet while the subnet equivalents are represented by /e25 subnet equivalent to
/e30 subnet equivalent. A perfect subnet equivalent that mimics the baseline dataset is
supposed to get 100% for AMAPS and SAMAPS with a score of zero SMASE, SMAE,
RMSE and MSE. As explained in Section 4.2.3, the equitable distribution of unique
SRCIPs and packets sent to the DSTIP ensured that subnets of the same size, irrespec-
tive of being on the upper or lower end of the subnet would produce similar results. The
actual unique SRCIP may be different but the value counts are similar in all subnets of
equal sizes. This is why this section used one subnet to present its results as opposed to
the approach that is used in random samples.

Table 6.10: 196-A/8-012021: Accuracy Scores of Unique SRCIP/DSTIP [Random]

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Equiv Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

/e25 99.25 99.25 0.02 0.47 0.66 0.44
/e26 98.39 98.38 0.05 0.92 1.13 1.28
/e27 97.95 97.96 0.07 1.19 1.47 2.18
/e28 96.53 96.59 0.14 2.32 2.89 8.40
/e29 96.63 96.64 0.14 2.27 3.52 12.43
/e30 94.67 94.63 0.20 3.26 4.07 16.57
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Table 6.11: 196-A/8-012021: Accuracy Scores of Unique SRCIP/DSTIP [Sequential]

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

.128/25 98.43 98.44 0.06 0.99 1.15 1.33

.192/26 98.20 98.18 0.07 1.15 1.32 1.76

.224/27 98.11 98.09 0.07 1.14 1.48 2.20

.240/28 97.69 97.68 0.08 1.35 1.73 3.00

.248/29 94.67 94.46 0.19 3.20 4.11 16.95

.252/30 91.01 90.48 0.32 5.35 6.16 37.98

Table 6.12: 196-A/8-022021: Accuracy Scores of Unique SRCIP/DSTIP [Random]

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Equiv Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

/e25 99.04 99.04 0.04 0.54 0.65 0.42
/e26 98.19 98.20 0.09 1.08 1.46 2.13
/e27 97.50 97.50 0.12 1.42 1.98 3.94
/e28 97.44 97.45 0.13 1.51 1.91 3.66
/e29 96.96 96.99 0.14 1.69 2.07 4.32
/e30 92.79 92.86 0.35 4.09 4.73 22.44

Table 6.13: 196-A/8-022021: Accuracy Scores of Unique SRCIP/DSTIP [Sequential]

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

.128/25 98.56 98.58 0.07 0.80 0.94 0.89

.192/26 97.69 97.65 0.11 1.33 1.73 3.02

.224/27 97.73 97.74 0.11 1.27 1.98 3.94

.240/28 96.16 96.27 0.20 2.29 4.46 19.93

.248/29 94.65 94.49 0.26 3.06 3.51 12.32

.252/30 91.30 90.89 0.43 4.96 5.54 30.74
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Table 6.14: 155/8-022021: Accuracy Scores of Unique SRCIP/DSTIP [Random]

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Equiv Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

/e25 98.67 98.68 0.07 0.76 1.04 1.08
/e26 98.17 98.15 0.10 1.01 1.24 1.54
/e27 97.68 97.66 0.12 1.26 1.49 2.24
/e28 97.04 97.08 0.16 1.66 2.47 6.11
/e29 96.13 96.14 0.19 2.01 2.28 5.23
/e30 93.63 93.45 0.35 3.64 4.65 21.67

Table 6.15: 155/8-022021: Accuracy Scores of Unique SRCIP/DSTIP [Sequential]

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

.128/25 98.69 98.70 0.06 0.69 0.82 0.68

.192/26 98.21 98.22 0.08 0.91 1.40 1.96

.224/27 97.18 97.13 0.15 1.62 1.91 3.68

.240/28 97.07 97.04 0.15 1.57 1.85 3.43

.248/29 95.21 95.10 0.25 2.62 3.00 9.04

.252/30 92.39 92.04 0.42 4.26 4.92 24.28

As it can be seen from Tables 6.10, 6.12 and 6.14, which represent the randomly
sampled datasets, /24 subnet has perfect scores followed by /e25 subnet equivalent. This
applies to all the tables computing the metrics under study. Thus from Tables 6.10, 6.12
and 6.14, /e25 subnet equivalent is the best representation of /24 subnet which essentially
means that if a /24 IPv4 net-block is randomly sampled to draw a /e25 subnet equivalent
and its unique SRCIP addresses analysed, an accuracy of 99.25% for both AMAPS and
SAMAPS will be expected from its outcome (for Table 6.10). This is a very high level
of accuracy. What is even more profound is that if the lowest number of unique DSTIP
addresses is to be sampled (in our case /e30 subnet equivalent), one would get an accuracy
of 94.64% and 94.63% for AMAPS and SAMAPS respectively for Table 6.10. Similar
levels of accuracy (slightly lower on both ends) are observed in February presented in
Table 6.12 for Network telescope 196-A/8, which ranges from 92.79% to 99.04% for
MAPS and 92.86% to 99.04% for SAMAPS. Table 6.14, which represents randomly
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sampled data from 155/8, shows accuracy levels ranging from 93.63% to 98.76% for
AMAPS and 93.45% to 98.68% for SAMAPS. All these findings are also graphically
presented later on in this section.

All these accuracy scores are a representation of how many unique SRCIP addresses a user
would find in any of the given subnet equivalents for these particular network telescopes.
This is the level of confidence that one would have in the feedback of representation when
using subnets of the original data. Keep in mind that these are computed from the number
of unique SRCIP addresses observed per DSTIP since this is standardised data based on
the number of DSTIP found in each sampled subnet. On the other hand, scores shown for
SMASE and SMAE, especially for /e25 subnet equivalent and /e26 subnet equivalent are
all below 1, falling within the desired range for this type of error. Even more interesting
is how the scores for RMSE and MSE are not far off from the baseline score of 1. High
values of SMAE, RMSE and MSE were observed when moving away from the baseline
i.e. from /e28 subnet equivalent to /e30 subnet equivalent. This also correlates well with
the accuracy scores shown in AMAPS and SAMAPS in that, as the value of the errors
are going up, the level of accuracy is going down, something that can be attributed to
the number of errors found in the smaller samples.

Let us now shift our attention to sequential sampling whose results have been presented
in Tables 6.11, 6.13 and 6.15. The sequential sampling tables show computed scores
of AMAPS, SAMAPS, SMASE, SMAE, RMSE and MSE. The baseline dataset is rep-
resented by .0/24 subnet while subsequent subnets are represented by .128/25 subnet to
.252/30 subnet. When a review of sequential sampling datasets was made, and its accu-
racy reviewed, a similar pattern seen in the random sampling dataset is observed here,
except this time the accuracy levels have dropped. The review and evaluation were made
by ensuring that the same datasets that were randomly sampled were also sequentially
sampled and given the same treatment. They are similar in the sense that sequentially
sampled datasets have also proved to have high accuracy scores (see Tables 6.11, 6.13
and 6.15). Secondly, like in random samples, .128/25 subnet has high accuracy scores
than any of the subsequent subnet done in this study. Having said that, let us look into
each of the datasets closely.

Tables 6.11, 6.13 and 6.15 show accuracy scores for SRCIP addresses observed per
DSTIP address in 196-A/8 and 155/8 network telescopes for the months of January
and February. In all three tables, the accuracy score for the highest accuracy level is
at least 98%. This is found in the .128/25 subnet. This is to say that if the 196-A/8
and 155/8 network telescope datasets have their baseline dataset (/24 IPv4 net-block)
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sequentially sampled for a .128/25 subnet, the observed events and analysis will have an
accuracy of at least 98%. The accuracy scores for sequential samples are slightly lower
than when the same network telescope datasets were randomly sampled. Some differences
are even closer to the minute detail as shown in Tables 6.14 and 6.15. In these two tables
(Tables 6.14 and 6.15), /e25 subnet equivalent and .128/25 subnet show a difference of
0.02 for both AMAPS and SAMAPS scores. However, looking at the remaining metrics
of SMASE, SMAE, RMSE and MSE, the scores showed more variations in the value of
the scores computed. This is not something that would have been picked if the analysis
had just focused on AMAPS and SAMAPS scores. Thus, it is imperative to look at all
metrics in each table per subnet equivalent and not isolate them.

The subnets and subnet equivalents found at the bottom end of these tables (Tables
6.14 and 6.15), show differences between sequential and random sampling scores that
are more apparent in /e29 and /e30 for random sampling, and .248/29 and .252/30 for
sequential sampling. Just as in random sampling, as the subnet moved from .0/24 going
towards .252/30, the accuracy scores gradually declined, as indicated in the columns
showing AMAPS and SAMAPS accuracy scores, while the error metric scores went up
(SMASE, SMAE, RMSE and MSE). This is true for all the network telescopes in different
months (See Tables 6.11, 6.13 and 6.15). High error scores of SMASE, SMAE, RMSE
and MSE as the subnet increases in number (move from .128/25 going to .252/30) are an
indication of how deviated the involved subnets are from the /24 net-block. An anomaly
was observed in the flow of errors when looking at .240/28 subnet in Table 6.13 where
RMSE and MSE for 6.13 is higher than that of .248/29 subnet in the same dataset. There
is no reflection of this anomaly though in the other metrics. Neither does it affect the
accuracy score for 196-A/8 network telescope for the month of February.

In all the data presented, for both random and sequential samples, the study observed
that the lowest accuracy scores were found in 196-A/8 Network telescope particularly
for .252/30 subnet (see Tables 6.11 and 6.13). Figures 6.10, 6.11 and 6.12, help
to give a graphical view of how monthly random and sequential sampling relate to each
other and, more importantly, how the baseline in each dataset interacts with its subnet
and subnet equivalent.
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(a) Subnet Equivalent (b) Subnet

Figure 6.10: 146/8-012021 - Time Series Plot Showing No. of Unique SRCIP/DSTIP

(a) Subnet Equivalent (b) Subnet

Figure 6.11: 196-A/8-022021 - Time Series Plot Showing No. of Unique SRCIP/DSTIP

Each plot is showing the timeline with which the data was collected in the X-axis and
the number of unique SRCIP addresses collected by individual DSTIP addresses in the
Y-axis. For sequential sampling, the plots are labelled subnet as its legend shows an
interaction between baseline for that dataset and its subnets. Throughout this study,
sequential samples have named subnets hence the name subnet was preferred to label
its plot. Each figure is a time series plot showing the number of unique SRCIP/DSTIP
collected daily (the X-axis presents this clearly).
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(a) Subnet Equivalent (b) Subnet

Figure 6.12: 155/8-032021 - Time Series Plot Showing No. of Unique SRCIP/DSTIP

On the other hand, all random sampling has been named subnet equivalent and the
plot with subnet equivalent shows the interaction between the baseline and its subnet
equivalents. Random sampling plots are presented in Figures 6.10a, 6.11a and 6.12a,
while sequential sampling plots are presented in Figures 6.10b, 6.11b and 6.12b. The
first thing that is apparent in all the three plots (Figures 6.10, 6.11 and 6.12) is
how similar the shapes shown by both the random and sequential sampling data looks
when plotted. For all three datasets, the pattern for random versus sequential is similar.
The volume of unique SRCIP addresses per DSTIP collected is similar too (see the Y-
axis). The peak points are similar and fall on the same dates. The way with which
the subnet equivalents interact with the baseline datasets is slightly different from that of
subnets collected for sequential samples, especially after mid way through the months. The
differences in the levels of accuracy are reflected by the deviations observed in how subnets
and subnet equivalents representing smaller subnets have deviated from the baseline.

Apart from January, (shown in Figure 6.10), the highest peak for all the datasets is
found at the beginning of each month with the arrival of new SRCIP addresses into
the network telescope. Looking at the interaction between the baseline datasets and
their samples (both random and sequential) gives one more reason why quantifying the
differences would show actual differences especially when the differences are minimal as
is the case here. None of the samples shows significant deviation from the baseline data.
That aside, it is clear to see that .252/30 subnet and /e30 subnet equivalent (represented
by light purples) is a bit further away from the baseline especially when the reader looks
at Figure 6.11. More deviations are observed in Figures 6.11 and 6.12 especially
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when the reader looks at subnets and subnet equivalents /e28, /e29 and /e30. It is these
deviations from the baseline line that account for the high error scores and decline in the
level of accuracy.

6.4.2 Case Study: IBR Data II

In this subsection, the study extends the analysis done on monthly datasets to quarterly
analysis starting from January to March. When datasets from 196-A/8 and 155/8 Net-
work telescopes were compared for monthly analysis and quarterly analysis, one significant
difference between the monthly datasets and those found in Tables 6.18 and 6.20 was
found in the accuracy scores. The accuracy scores for AMAPS, SAMAPS, SMASE and
SMAE have slightly gone down for 196-A/8 Network telescope in the quarterly analysis.
What this means is that while the accuracy has gone down, the errors have slightly gone
up over the three months period. On the other hand, network telescope 155/8 has shown
a slight increase in accuracy while having the error scores gone down.

While this is the case for random sampling, in particular 155/8 network telescope data, all
accuracy scores (AMAPS and SAMAPS) for both 196-A/8 and 155/8 network telescope
datasets have gone down. In return, the error metrics (SMASE, SMAE, RMSE and MSE)
have slightly gone down. What is more apparent with the increase of the observation
period is that, overtime, it is clear to see that randomly sampled data performed better
than sequentially sampled data in quarterly analysis. This is evident in Tables 6.16,
6.18 and 6.20. It is even clearer to see the difference between random and sequential
samples when graphical representation is taken into account (see Figures 6.13, 6.14 and
6.15.

Table 6.16: 146/8-2021 - [Jan - Mar]: Accuracy Scores of Unique SRCIP/DSTIP

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Equiv Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

/e25 99.15 99.15 0.06 0.40 0.51 0.26
/e26 98.62 98.62 0.10 0.65 0.86 0.74
/e27 97.44 97.47 0.19 1.24 1.59 2.54
/e28 96.70 96.74 0.25 1.57 2.12 4.53
/e29 96.41 96.40 0.26 1.68 2.10 4.42
/e30 94.49 94.48 0.40 2.54 3.23 10.45
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Table 6.17: 146/8-2021 - [Jan - Mar]: Accuracy Scores of Unique SRCIP/DSTIP

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

.128/25 98.79 98.80 0.08 0.56 0.68 0.47

.192/26 98.37 98.37 0.12 0.76 0.97 0.94

.224/27 97.88 97.87 0.15 0.99 1.27 1.63

.240/28 96.38 96.44 0.26 1.65 2.38 5.69

.248/29 94.73 94.56 0.40 2.51 3.10 9.61

.252/30 91.78 91.32 0.61 3.88 4.61 21.32

Table 6.18: 196-A/8-2021 - [Jan-Mar]: Accuracy Scores of Unique SRCIP/DSTIP

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Equiv Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

/e25 99.15 99.15 0.05 0.43 0.60 0.36
/e26 98.24 98.24 0.11 0.88 1.14 1.32
/e27 97.97 97.99 0.12 1.03 1.45 2.13
/e28 97.02 97.03 0.20 1.63 2.14 4.59
/e29 96.22 96.23 0.25 1.99 2.79 7.83
/e30 94.19 94.15 0.36 2.95 3.65 13.36

Table 6.19: 196-A/8-2021 - [Jan-Mar]: Accuracy Scores of Unique SRCIP/DSTIP

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

.128/25 98.39 98.41 0.10 0.83 0.98 0.96

.192/26 97.80 97.77 0.14 1.11 1.33 1.78

.224/27 97.76 97.76 0.14 1.13 1.56 2.43

.240/28 97.11 97.15 0.18 1.45 2.52 6.39

.248/29 94.81 94.66 0.33 2.69 3.40 11.60

.252/30 90.76 90.19 0.58 4.68 5.43 29.56
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Table 6.20: 155/8-2021 - [Jan - Mar]: Accuracy Scores of Unique SRCIP/DSTIP

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Equiv Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

/e25 98.96 98.97 0.07 0.51 0.78 0.61
/e26 98.10 98.07 0.14 0.94 1.26 1.59
/e27 97.75 97.74 0.16 1.08 1.41 1.99
/e28 97.03 97.03 0.23 1.52 2.13 4.54
/e29 95.06 95.00 0.36 2.36 2.83 8.01
/e30 94.00 93.89 0.46 3.01 3.89 15.16

Table 6.21: 155/8-2021 - [Jan - Mar]: Accuracy Scores of Unique SRCIP/DSTIP

Subnet AMAPS SAMAPS SMASE SMAE RMSE MSE

Acc.(%) Acc.(%) Score Score Score Score

/24 100 100 0 0 0 0

.128/25 98.15 98.18 0.13 0.90 1.17 1.37

.192/26 98.00 97.97 0.15 0.97 1.24 1.54

.224/27 97.23 97.19 0.21 1.38 1.73 3.02

.240/28 96.82 96.77 0.24 1.55 1.92 3.69

.248/29 94.23 94.04 0.43 2.83 3.41 11.65

.252/30 92.03 91.56 0.59 3.83 4.82 23.30

As explained in Section 6.4.1, more deviations are observed when looking at subnet
and subnet equivalents 28, 29 and 30. It is these deviations from the baseline line that
account for the high error scores and decline in the level of accuracy. Another unintended
observation and result that has been revealed in this quarterly analysis is the presence
of the peak on the 9th of January in Figures 6.13, 6.14 and 6.15. This confirms how
correlated the traffic and unique SRCIPs are in all the three network telescopes under
study.
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(a) Subnet Equivalent (b) Subnet

Figure 6.13: 146/8 - [Jan - Mar]: Time Series Plot of No. of Unique SRCIP/DSTIP

(a) Subnet Equivalent (b) Subnet

Figure 6.14: 196-A/8 -[Jan - Mar]: Time Series Plot of No. of Unique SRCIP/DSTIP
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(a) Subnet Equivalent (b) Subnet

Figure 6.15: 155/8 -[Jan - Mar]: Time Series Plot of No. of Unique SRCIP/DSTIP

6.5 Recommendations on DSTIPMonitoring and Place-

ment

Work presented in Sections 6.3, 6.4.1 and 6.4.2 show that longer observations give
better accuracy and error scores as compared to shorter observation periods. Shorter in
this study was defined by monthly datasets while longer by quarterly datasets. Thus the
study recommends longer observations to get better results. Secondly, by accommodating
all scores under study (AMAPS, SAMAPS, SMASE, SMAE, RMSE and MSE), only /e25
presents the best alternative to a /24 IPv4 baseline. This is the case because in all case
studies SMAE score is the only one that is below the value of 1. This gets better when
quarterly data is used in which case, results show that /e26 and /e27 has also scores that
are below 1. Acceptable scores for SMAE ought to be below 1. All samples that have had
a score below or around 1 have shown the lowest error scores from RMSE and MSE. Thus
following /e25 are /e26 and /e27. With this premise and results presented, this study
would not recommend setting up a network telescope below 32 unique DSTIP. SMAE
sets set a strict criteria of acceptable score, as such although the accuracy scores for /e28
- /e30 are above 90% its SMAE score is out of the acceptable range.

Furthermore, when the study compared random and sequential samples, random samples
performed better. Thus this study recommends random placement of unique DSTIP in
network telescopes as opposed to sequential. This is true for both long term observation
as well as short term observation of DSTIPs. Lastly, high accuracy scores for AMAPS,
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SAMAPS, SMASE and SMAE show that the models developed perform better especially
when RMSE and MSE are taken into consideration. The study therefore recommends the
use of RMSE and MSE when computing the difference (in unique SRCIP addresses per
DSTIP) that exists between samples.

6.6 Feasibility of Sampling IBR Data

The study has successfully proved that it is feasible to sample and use a portion of a
network telescope and still attain high levels of representation from the baseline dataset.
From the findings presented in Section 6.4, it is apparent that randomly sampled datasets
have higher accuracy scores than sequentially sampled data. Thus, the study recommends
randomly sampling unique DSTIP addresses to an end user. However, it does not disre-
gard the significance of sequential sampling as the differences in the level of accuracy were
not very significant. Secondly, SRCIP addresses make a strong case of showing higher
accuracy levels than packet dataset, with its lowest accuracy presented at at least 93%
accuracy score for AMAPS and SAMAPS scores and going as high as 99%. These values
are true for randomly sampled datasets. Work done on packets per unique DSTIP address
(TCP network traffic) can be found in Chindipha et al. (2019b). It was from the findings
of this paper that the study opted to work with unique SRCIP addresses as compared
to packets when it comes to computing the accuracy of sample representativeness. This
was supported by the fact that some unique SRCIP addresses sent more packets than
others thereby affecting the normalisation of the data, which in turn negatively affected
the quality if the results.

On the other hand, sequentially sampled datasets have shown the lowest accuracy score
of at least 90% for AMAPS and SAMAPS scores and go as high as 98%. A .128/25
subnet and /e25 subnet equivalent, are the best options thus far showing remarkable
scores throughout the study when compared to the other subnets and subnet equivalents.
However, this is only true if a network telescope user is interested in near perfect repre-
sentation of the baseline. Otherwise, what this simply means is that more unique DSTIP
addresses are still better than fewer DSTIP addresses. However, these models offer the
levels of accuracy with which if a user is comfortable with can use to work with a smaller
telescope. For instance, an accuracy of 97% for 16 unique DSTIP addresses is certainly
good enough to offer insights and confidence to a network telescope user who only has 16
randomly spaced DSTIP addresses. This knowledge helps the user to know how much is
most likely to be missing and make plans accordingly.



6.7. ANALYSIS OF MODEL PERFORMANCE ON IBR DATA 164

The study also shows that the use of subnets and subnet equivalents as a means of
identifying activities happening from their original baseline dataset is viable. This is
primarily attributed to the high accuracy scores observed in the bigger samples (like
.128/25 subnet and /e25 subnet equivalent). Acceptance of the level of accuracy varies
with the intent of the use of the data. However, what is certain is that there is at least
a 93% chance of getting the estimations of the original data correctly. The technique of
random sampling of subnet equivalents can be employed to create a subnet equivalent
with a high level of fidelity when compared to the original subnet. In the end, one ends
up saving on the time needed to work on large chunks of dataset, or if IP address blocks
are limited, without a lot of compromise on the accuracy of the results.

6.7 Analysis of Model Performance on IBR Data

Although processing and working with a /24 IPv4 net-block datasets gives better results
by affording an end user a wider scope of events than what one would get with a smaller
network telescope, this study has shown that it is possible to use accuracy metrics to
sample out a baseline dataset and use it as a new dataset. Using the level of accuracy
shown in samples of .128/25 to .252/30 subnets for sequential data samples and /e25
to /e30 subnet equivalent for random samples, it is evident that the error of margin
observed while sampling out the dataset is relatively small particularly for bigger subnet
equivalents.

Using AMAPS, SAMAPS, SMASE and SMAE models, randomly sampled datasets have
proved to have very high accuracy levels when compared to sequentially sampled datasets.
When the metric scores were used to test the accuracy levels of number of unique SRCIP
addresses per DSTIP, the randomly sampled hosts showed relatively higher accuracy
than the sequential samples. This was true for both monthly and quarterly datasets.
The models have shown high accuracy levels of over 99% for randomly sampled datasets
and 98% for sequentially sampled data. A mean accuracy score of at least 95% for
both AMAPS and SAMAPS in both sequential and random datasets has shown that
it is possible to sample out 16 unique DSTIP addresses from a baseline dataset and still
achieve high levels of accuracy in one’s threat intelligence gathering using a small aperture
network telescope.

Between the two comparable metrics, SAMAPS produced slightly high accuracy scores
than AMAPS. This is attributed to its symmetrical nature when computing the scores.
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SMASE, on the other hand, operate on a different scale with all of the samples falling
within the acceptable range of between 0 and 1. The derived models of AMAPS, SAMAPS,
SMASE and SMAE have proved to be reliable tools to use when comparing different sam-
ples as long as the data samples are normalised with well know standardising mechanisms.
The models have also been shown to operate along other mathematical models like RMSE
and MSE to achieve the same goal. In addition to this, the models have proved to work
with both sequential and random samples and still achieve very good results. More impor-
tantly, in addressing the main research question, the models have shown that it is feasible
to sequentially and randomly sample IBR datasets to represent a baseline dataset. In the
process of doing this, they have opened the way for the use of smaller scattered addresses
within larger organisational networks to be utilised for threat intelligence and IBR collec-
tion, and offer an opportunity for those with small address blocks to use whatever they
can afford to utilise for passive threat intelligence gathering.

6.8 Strengths and Limitations of the Developed Models

Considering the fact that the AMAPS, SAMAPS, MMAE, MMASE were derived from
the MAPE, SMAPE, MAE and MASE, they do, in part, inherit some of the limitations
that these models have. However, there are also some strengths that have been rectified
with these models that are present in MAPE, SMAPE, MAE and MASE. It is important
to note that these strengths and limitations presented in this section have mostly to
do with the usability and functionality of the models. Thus, some of these limitations
found in MAPE, SMAPE, MAE and MASE are present because these models are used
for forecasting. However, this study was not interested in forecasting. Its main interest
was on quantifying the variations present in the datasets already collected to understand
how different each of the large samples were from smaller ones.

6.8.1 Strengths

In MAPE, SMAPE, MAE and MASE, if the value is not present on the actual values,
then it becomes undefined in the forecast values. Essentially, the forecast value is going
to be given a value of zero, which does affect the trend when it comes to computing the
average but also when graphically presenting the data. AMAPS, SAMAPS, SMAE and
SMASE do not have this drawback in that, if the data point is not present in the baseline,
it follows without loss of generality that it will not be found in any of subnet or subnet
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equivalents. Thus, when computing the mean between the baseline and the subnet (and
subnet equivalent), such data points are not accounted for and do not affect the levels
of accuracy presented. AMAPS, SAMAPS, SMAE and SMASE operate on the principle
that if the data point is not present in the baseline dataset, there is no need to add it to
the time series for computation. This is not the case with MAPE, SMAPE, MAE and
MASE as one needs to account for every value present and not present in the computation.

While the models developed by Hyndman and Koehler (2006) only work with time series
data, the models developed in this study have been tested with data that is either of a
time series nature or just a series of data samples with no time attached to it. If the user
is using time series data then one needs to make sure that the timeline is well adjusted
to all data samples to avoid any bias. For instance, in this study, the fact that data was
sampled out from the baseline data meant that, by default, some data points were left
out of the sample draws. With this, the study had to keep in mind that if the analysis
of the data was done on an hourly basis, then it is possible that the sample draws may
not have some unique SRCIP present in their pool. This is the case because some SRCIP
addresses were only present for certain hours within a particular day.

What this means is that, in this study, there were some cases where certain unique SRCIP
addresses were registered by the network telescopes within a certain section of the day and
never showed up again uniformly within the whole day. In those instances, they were not
registered to all unique DSTIP addresses, thus not being uniformly available at the lowest
levels of the unit of measure, which is time. Thus the lowest unit of measure would be
seconds, minutes, and then hours. So, some unique sources would be available in certain
unique DSTIP addresses within specific minutes of the day but not present within every
hour.

Now, if the study’s time-value(t) was put at hourly analysis instead of daily analysis, what
that means is that the size of the data samples was going to be different since the unique
SRCIP addresses were not uniformly distributed within the given day. Thus, though the
computation will be possible, it would affect the level of accuracy of the results, hence the
unit of time has to be taken into consideration. Obviously, the baseline will contain all
the data points of interest, but hourly analysis on the samples will contain more variation
against the baseline than when the time-value is scaled up to daily analysis. However, As
the duration of the observation gets longer, these variations get obscured as some of the
data points missed out earlier are recorded or caught at a later time within the sample
subnet equivalent.
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6.8.2 Limitations

There are some limitations that are unique to these developed models. To begin with, if
a user of the model fails to find the appropriate unit or value to standardise the values
contained in different samples, then the level of accuracy computed from the different
samples is going to be wrong. This then makes it difficult to compare two different
samples since the unit of measure has now changed, leading to results that could not
only be misleading but also wrong. Thus a model user needs to make sure that different
samples have the same unit of standardising the data points as the baseline data.

If it happens that a model user is working with data that does not have a unit with which
to standardise the other data samples, then these models cannot be used to measure the
degree to which they are varying. For IBR data, our unit of measure was to try and
identify the number of unique sources received per individual DSTIP address. Thus, the
size of the subnet or the subnet equivalent becomes this study’s value of standardising its
samples. If a mistake is made by using the wrong size for a subnet to standardise, then
the results will be wrong and misleading. Standardisation is very critical to these models
as they help to ensure that the different samples are comparable and are brought to the
same scale.

6.9 Port Analysis Using JD, TF and IDF

This section shows how the techniques presented in Section 3.10 are used in line with
this study. As alluded to in Section 3.10, the formulae will be presented in the context of
this study. This is to say, there will not be the mention of an item or word or document in
the formula. Instead, ports and subnet equivalents will be used to show how the methods
have been adapted to fit this study. This section will focus more on the computed scores
for all the four Information Retrieval and Text Mining Techniques (IR-TMT) using the
theoretical knowledge that has been presented already in Section 3.10. Initial work
which formed the basis of this section was published in (Chindipha et al., 2019a).
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Table 6.22: 155/8-012021: DPORT IR-TMT Scores for TCP Traffic

Subnet JD TF IDF TF-IDF

/24 0 0 0 0
.128/25 0.0 1.52 x 10-05 0.30 4.59 x 10-06

.192/26 0.003 1.53 x 10-05 0.30 4.59 x 10-06

.224/27 0.004 1.53 x 10-05 0.30 4.59 x 10-06

.240/28 0.005 1.54 x 10-05 0.30 4.59 x 10-06

.248/29 0.006 1.54 x 10-05 0.30 4.59 x 10-06

.252/30 0.012 1.55 x 10-05 0.30 4.59 x 10-06

Table 6.23: 146/8-012021: DPORT IR-TMT Scores for TCP Traffic

Subnet JD TF IDF TF-IDF

/24 0 0 0 0
.128/25 0.0 1.52 x 10-05 0.30 4.59 x 10-06

.192/26 0.002 1.52 x 10-05 0.30 4.59 x 10-06

.224/27 0.003 1.53 x 10-05 0.30 4.59 x 10-06

.240/28 0.005 1.53 x 10-05 0.30 4.59 x 10-06

.248/29 0.007 1.54 x 10-05 0.30 4.59 x 10-06

.252/30 0.014 1.56 x 10-05 0.30 4.59 x 10-06

Tables 6.22 and 6.23 show summary of scores for JD, TF, IDF and TF-IDF with data
collected from 155/8 and 146/8 Network telescopes respectively. All the data used in
this section is composed of TCP Traffic. In addition to this, note that all the results from
this section used sequential samples. The core idea behind using sequential sampling on
this was to accommodate every possible occurrence of the DPORTs as the objective was
to quantify any differences that may exist between the /24 IPv4 baseline and the subnets.
With random sampling, it is possible to skip some ports in the samples. Sequential
sampling offered the best approach to computing port differences in samples It is for this
reason that this study will not show IR-TMT Scores for random sample datasets. Note
also how similar the results have been thus far in different datasets from different network
telescopes. Thus to demonstrate the differences in DPORTs that exist between datasets,
the study used January datasets from 155/8 and 146/8 Network telescopes.
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Table 6.24: 155/8-012021: Differences in DPORT Count for TCP Traffic

Subnet Count Diff (Count) Diff (%)

/24 65,485 0 0
.128/25 65,485 0 0
.192/26 65,373 112 0.17
.224/27 65,305 180 0.27
.240/28 65,262 223 0.34
.248/29 65,105 380 0.58
.252/30 64,641 844 1.28

Table 6.25: 146/8-012021: Differences in DPORT Count for TCP Traffic

Subnet Count Diff (Count) Diff (%)

/24 65,485 0 0
.128/25 65,485 0 0
.192/26 65,469 16 0.02
.224/27 65,345 140 0.21
.240/28 65,232 253 0.38
.248/29 65,112 423 0.64
.252/30 64,521 964 1.47

A Jaccard Distance ranges on a scale of 0 to 1 where 0 is a match of the baseline dataset
(/24 IPv4) and a subnet. On the other hand, a value of 1 means that the baseline dataset
(/24 IPv4) and a subnet under review are completely different. Both the 155/8-012021
and 146/8-012021 databases demonstrate that the DPORTs show that a .128/25 subnet
is an accurate representation of IPv4 net-block address with a distance of zero. Tables
6.24 and 6.25 support this argument by showing the difference in the number of unique
DPORTs that exists between the baseline dataset and .128/25 subnet.

For both 155/8-012021 and 146/8-012021 databases, the DPORTs difference in the
.128/25 subnets (see Tables 6.24 and 6.25) accurately represent this difference by show-
ing the same number of unique DPORTs. However, moving from .128/25 subnet heading
towards .252/30 subnet, the differences in the number of unique DPORTs become more
apparent. While still on JD, as the differences in the number of unique DPORTs increase
(shown in Tables 6.24 and 6.25), JD is increasing as well, reflecting this variation.
The highest JD (0.014) is found Table 6.25 for 146/8-012021 dataset which shows a
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DPORT composition difference of 1.47% (see Table 6.25) from the baseline database.
All the differences in the subnet are computed against the /24 IPv4 baseline i.e. the study
subtracted the value found in individual samples from the baseline dataset. Using these
differences, the study computed the percentage composition difference. This is how values
in Tables 6.24 and 6.25 were computed.

The term frequency (TF) scores show a slight variation in Tables 6.22 and 6.23. In fact,
it is very easy to miss out on such differences because they would almost equate to zero
if they are reduced to four decimal places. What is significant in these scores is to note
that the scores are different because the sizes of the subnets are different, and thus when
compared against the baseline dataset, it is reflecting these variations. This should have
raised concerns had the TF scores been the same since this TF technique takes frequency
into account and from Tables 6.24 and 6.25, it is apparent that the content of one
subnet is slightly different from the next. A good judgment of this is shown in Table
6.25 where the difference between .128/25 subnet and .192/26 subnet is only 16 and thus
their frequency is identical (see Table 6.25).

The variations in DPORTs are not large, hence the TF scores being either identical or close
to each other. What this means is that according to TF scores, these subnets are a good
fit as a representation of the baseline dataset because the scores are very close to zero,
which is a good indicator of ideal scores. However, in JD computation and interpretation,
if a perfect representation is to be picked, then the bigger subnet will be chosen because
the variations are smaller in these than they are in smaller subnets (see Tables Tables
6.24 and 6.25). What is more significant to note, however, is how small the differences
are between the baseline datasets and .252/30 subnet. The difference in the composition
of unique DPORTs found between the baseline datasets and .252/30 subnet is less than
1.5%. This is a very good variation for a worst-case scenario.

Finally, the study looked at IDF and TF-IDF. It is very easy for one to assume that there
must have been something wrong with these scores since they are the same, however,
they accurately represent the summary statistics of the variations that exist between the
baseline and subnet equivalent datasets. Keep in mind that IDF in this study measures
DPORTs that are not common in the two samples being evaluated i.e. the baseline dataset
and any subnet under evaluation. Since all DPORTs are unique, then it is only logical
that their weight be the same since each port is represented once in the subnet equivalent.
Once because each port is unique. If we match /24 IPv4 against itself, it will give a value
of zero because all the DPORTs are present in both datasets.

TF-IDF is computed using part of IDF, and as such, as long as one of the two variables
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remains the same, then TF-IDF will reflect that. More importantly, the TF-IDF scores are
the same in both 155/8-012021 and 146/8-012021 dataset because they are uniquely
represented in their subnet. Since the score for IDF and TF-IDF are closer to zero than
one, it is safe to say that, as far as DPORTs are concerned, all the subnets equally represent
the baseline dataset. In Section 4.2.2, this study showed that most of the dominant
DPORTs received roughly about the same amount of traffic from SRCIP addresses. In
the same section, the study showed that such DPORTs were present to all unique DSTIP
addresses. This occurrence helps to explain why there are very few variations in the
number of unique DPORTs contained in the different subnet. These results basically
show that most DPORTs are present in all the unique DSTIP addresses. All the top 10
DPORTs had the same traffic reception with the key difference being the volume of traffic
that the number of DPORTs contained in each subnet received.

The study opted to use the number of unique DPORTs found in a given subnet instead
of just accommodating the differences in the frequency of the DPORTs because different
ports have different vulnerabilities. So, if a port is recorded once, there is no need for
another occurrence to verify a specific vulnerability under study. A single occurrence is
deemed to be sufficient evidence of its existence. In another study, it would be significant
if the research is testing for specific vulnerability (such as Distributed Denial of Service
(DDoS) attack), but in this study, the frequency of ports in a subnet was not significant.

6.9.1 Recommendations for DPORTs

With observations made in this study, this research recommends that the Information
Retrieval and Text Mining Techniques (IR-TMT) be used as a method to compare the
dissimilarity between the baseline dataset, and the datasets. The study has shown that
when unique DPORTs are taken into consideration, there are negligible differences that
exist between the baseline dataset and the subnets. The weighting scores show negligible
difference when comparing data sets from different network telescopes. The study has also
shown that there are negligible differences between the baseline dataset and the smallest
subnet (1.47% difference with the poorest subnet scores). It is thus not surprising that
the scores are reflecting this proximity, i.e. the scores are closer to zero than one. This
is proof of how close the subnet equivalents are to the baseline database. The scores are
almost identical because more than 75% of the unique DPORTs are present in all the
subnet equivalents.

Another finding that stood out were the scores of IDF and TF-IDF which were constant
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in all the subnet equivalents. The TF-IDF scores are the same in both databases because
each of DPORT in all the subnet is unique, and thus, given the same weight throughout
the subnets. This is significant because, if the scores were different, it would have raised
many questions in the suitability of these techniques to this case study. AS in all other
fields, unique items have the same weight as their dataset. Since most of the scores are
identical, one measure that easily distinguishes the scores is the Jaccard Distance. As the
subnet size decreased, the distance increased gradually. Thus it is confirmed that larger
subnets are still a better representation of baseline datasets than smaller ones. However,
in this case, such marginal differences can be overlooked as the differences are not huge,
making each subnet a viable option for selection.

6.10 Summary

In this chapter, this study proposed a number of models that can be used to quantify the
differences that exist between the baseline datasets and subnets (for sequentially sampled
data) and subnet equivalents (for randomly sampled data). The overall objective behind
this chapter was to quantify that it is possible to use a small sized network telescope
and know the actual differences that exist between the large network samples and smaller
network samples.

The chapter begins by introducing the mathematical models that have been derived to
work with IBR data in Section 6.1. In this section, Absolute Mean Accuracy Percent-
age Score (AMAPS), Symmetric Absolute Mean Accuracy Percentage Score (SAMAPS),
Standardised Mean Absolute Error (SMAE), and Standardised Mean Absolute Scaled
Error (SMASE) are explained. The research approach used in analysing the IBR ready
for use is explained in Section 6.2. Visual representations are utilised herein in order to
show how the data looked like prior to being processed. This is done in the form of time
series plots as well as box plots. This is for both sequential and random datasets. An
evaluation of AMAPS, SAMAPS, SMAE and SMASE against MAPE, SMAPE, MAE,
MASE is explained in Section 6.3. This is immediately followed by an assessment of the
performance of the Models on Random vs Sequential IBR Samples in Section 6.4. In
each of these assessment sections, both monthly and quarterly datasets are evaluated. In
Section 6.5, the study made recommendations on monitoring and placement of DSTIP
in order to get the best results from them.

Feasibility study of sampling IBR data is conducted in Section 6.6. The performance of
the model on IBR data is explained in Section 6.7. The study also assessed the strengths
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and limitations of the developed models in Section 6.8. At this point, the study had
conducted tests on SRCIP and DSTIP addresses. Thus the study changed its focus and
conducted a port analysis in Section 6.9. This was done using Information Retrieval
and Text Mining Techniques (IR-TMT). This section also offered recommendations on its
finding regarding DPORTs.

Having analysed IBR datasets using Bootstrapping and then evaluating them using some
of the mathematical models (both developed and old techniques), the study opted to
assess the practical aspects of its findings. More importantly, assessing how the size of
the network telescope affects the proportion of how many unique SRCIP addresses are
collected when it has been used over a period of time. All this is explored in Chapter 7



7
Practical Applications and Implications

Having undertaken analysis using Bootstrapping in Chapter 5 and analysed the data
using custom made mathematical models inChapter 6, the study transitioned to evaluate
some of the practical applications in each of the analyses conducted.

In Section 7.1, the study expands and clarifies the work done in Chapter 5 by showing
why bootstrapping answers the research questions and how it can be applied. This is the
section that addresses the application of Bootstrapping IBR data. This is followed by
Section 7.2, which shows the effect of time on the amount of threat intelligence data.
To be more specific, the study analysed how long it takes for different sizes of network
telescope to collect specific proportions. This section helps the reader to understand the
effect of using a small-sized network telescope on the volume of unique SRCIP addresses
collected over time. This leads to Section 7.3 which focuses on cross disciplinary practical
applications of the models developed outside of IBR data. In Sections 6.3 and 6.4, this
research has laid a good argument on how the mathematical models developed can be
used to quantify differences in terms of threat intelligence data. This chapter expands the
application of these models outside of IBR data.

174
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7.1 Applications of Bootstrapping IBR Data

Table 7.1: Monthly Summary Table for CI in Percentage at 95% CI

Bootstrap Size Avg. Bootstrap Mean % Average SEM % CI
256 - /e24 100.00 4.68 [95.32 - 104.68]
128 - /e25 50.17 2.34 [47.83 - 52.51]
64 - /e26 25.17 1.20 [23.97 - 26.37]
32 - /e27 12.50 0.64 [11.86 - 13.14]
16 - /e28 6.21 0.37 [5.75 - 6.49]

Table 7.2: Quarterly Summary Table for CI in Percentage at 95% CI

Bootstrap Size Avg. Bootstrap Mean % Average SEM % CI
256 - /e24 100.00 1.76 [98.24 - 101.76]
128 - /e25 50.30 0.92 [49.38 - 51.22]
64 - /e26 25.45 0.51 [24.94 - 25.96]
32 - /e27 12.69 0.29 [12.40 - 12.98]
16 - /e28 6.78 0.27 [6.51 - 7.05]

As mentioned in Section 5.7, IBR data has shown results that were more reflective of
the baseline bootstrap when working with non-parametric bootstrapping than parametric
bootstrap, and thus the study recommended the use of non-parametric bootstrapping for
future studies. The study also recommended the use of the data at least at 95% CI level
because the variations between 95% and 99% CI level are not big. Tables 7.1 and 7.2
are repeated and made available for discussion in this section. These two tables are first
presented in Section 5.7 and presented here to show how these artefacts can be applied
in in real world.

Each network telescope size has its associated proportion of unique SRCIP addresses,
overall, when compared to the baseline. The two tables reproduced in this section show
these proportions. An organisation that does not have large network telescopes can use
these proportions in the table to compute how much their current size can collect in
relation to the baseline. Currently, if a network telescope user bootstraps a /25 dataset,
the average number of unique SRCIP/hour collected by the user’s network telescope will
range between 47.83% - 52.51%. This range presents confidence intervals at 95% CI that
would allow the user to make decisions with that level of confidence. The confidence in
the data allow a network telescope user to make decisions that they would be comfortable
with.
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More importantly, the tables show that smaller network telescopes can also be entrusted
to collect IBR data. Having bootstrapped IBR data, value has now been added to show
how much data can be collected by smaller network telescopes on hourly basis. Recall
that bootstrapping enabled the computation of CI, and it is the CI that can now give
confidence to any user who will use the IBR data. One of the research questions was to
quantify how the baseline can compare to a smaller network telescope. Now that these
values are known, decisions can be made from it.

As stated in Section 5.7, the actual count of average number of unique SRCIP/hour may
be different but the proportional range will remain the same. As such, other researchers no
longer need to have a larger telescope in order to observe the estimates of how proportional
their smaller sized network telescopes can relate to larger network telescopes. Other
researchers do not need to have a baseline to quantify the average number of unique
SRCIP/hour observed in their freely random selected DSTIPs. The table proportions can
be used to compute the range of values expected as long as they know their SEM. IBR
data users can present their findings with 95% degree of certainty using Tables 7.1 and
7.2. In other words, Tables 7.1 and 7.2 offer other IBR researchers the range of values
that they should expect their estimates to fall between, 95% of the time if they run their
experiment again or re-sample the IBR data in the same way.

Longer observation periods are highly recommended as narrow or small confidence interval
indicates that if a network telescope user were to bootstrap a different IBR sample, then
the researchers are reasonably sure they would get a similar result. A wide confidence
interval indicates that we are less sure and perhaps information needs to be collected
from a larger sample to increase the user’s confidence. This is apparent in Table 7.2
which shows narrow CI as compared to Table 7.1. The work presented here can act as
a benchmark to future work. For instance, now that the proportion of representation for
different network telescopes are known and the average number of unique SRCIP/hour
can be computed from them, this knowledge that was not available prior to this research,
directly answers the question of quantifying the differences that exist between small and
large network telescope sensors. The next set of questions would be to quantify the threat
intelligence data that these different sizes collect. Are the proportions observed here going
to match with the value of the threat intelligence each network telescope size collects?
Do the unique SRCIP collected by different network telescope sizes contain unique threat
intelligence data as well? Or are there some commonalities in the threat collected by the
identified pool of unique SRCIPs? These are some of the questions that future researchers
can address having learnt of the CI computed from bootstrapping IBR data.
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7.2 Unique SRCIP vs. Time

So far the study has quantified and graphically demonstrated that large samples, which
represent large network telescopes, are a better option to replace a /24 IPv4 baseline
dataset than smaller networks. This study has offered smaller network telescope users the
details that they need to make informed decisions. The information comes with certain
levels of confidence in the data that is collected by the small-sized network telescopes.
This study provides the differences and the levels of confidence offered by the different
samples which represent different network telescope lenses. This study has provided this
information graphically and quantitatively.

The study has also shown that, given enough time, small network telescopes should be
able to collect the same amount of threat intelligence, although it may require more time
for them to attain the desired amount of data. However, one research question that has
not been addressed yet is how long it would take different sizes of network telescopes to
observe a certain proportion of the total amount of unique SRCIPs. For instance; how long
would it take for a small-sized network telescope to observe 20% of the unique SRCIPs
that contributed to the total traffic observed in any network telescope? Does the time
taken to observe such a proportion differ when the size of the network telescope changes?
These are the questions that are addressed in this section as they offer a realistic timeline
for a network telescope user to work with. The study also conducted a time series analysis
by analysing what proportion of unique source IP addresses are observed at different time
frames. The two questions being addressed in this section are:

1. How long does it take to observe a specific proportion (e.g. 10%, 20% or 50%) of
the unique sources?

2. What happens to these proportions when the size of the network telescope changes?
Two approaches were used on this: firstly by just observing one telescope, and
secondly, by observing multiple telescopes.

These questions offer practical applications to a network telescope user as they would
know when to expect certain amounts of data to be collected. Using the data received
from the unique SRCIPs, threat intelligence can be extracted. To address these questions,
this study used monthly and quarterly data collected in 2021.
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(a) Normalised (b) Not Normalised

Figure 7.1: 146/8 -[Jan - Mar]: Unique SRCIPs over time [Sequential]

(a) Normalised (b) Not Normalised

Figure 7.2: 146/8 -[Jan - Mar]: Unique SRCIPs over time [Random]

Figures 7.1 and 7.2 show cumulative time series plots for 146/8 Network telescope.
Figure 7.1a and 7.2a are normalised by computing the percentage composition against
the total of the individual datasets. This is why each of the plots amount to 100 %.
This is how all plots have been normalised in this section. These plots were included in
this section to show how normalised datasets relate to each other. Figures 7.1b and
7.2b are not normalised. Each data sample is computed against the baseline total as its
denominator. The explanations in this section will primarily focus on the datasets that
were not normalised as they show results that are relative to a larger network telescope.
Thus offering a comparison with the base.
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The most outstanding result from Figures 7.1b and 7.2b is how similar random and
sequential data samples look like. Both Figures 7.1b and 7.2b show the proportion
of the number of unique SRCIP observed at specific times for 146/8 network telescope
with data collected from January to March. The data used for Figures 7.1b and 7.2b is
summarised in Tables 7.3 and 7.4. In this section, T0 in the tables represent week zero
while TLD represent the last day of observation.

Table 7.3: 146/8-[Jan - Mar]: Sequential Cumulative % Summary Table

Timeline /24 /25 /26 /27 /28 /29 /30

T0 1.34 0.67 0.34 0.17 0.08 0.04 0.02
T1 8.78 4.47 2.15 1.08 0.54 0.27 0.14
T2 19.54 9.84 4.86 2.43 1.20 0.62 0.29
T3 26.68 13.40 6.67 3.35 1.64 0.84 0.40
T4 34.19 17.18 8.52 4.27 2.14 1.07 0.51
T5 41.56 20.86 10.35 5.20 2.60 1.32 0.62
T6 48.97 24.60 12.18 6.12 3.07 1.56 0.73
T7 56.58 28.38 14.11 7.06 3.54 1.80 0.85
T8 63.51 31.83 15.85 7.95 3.97 2.02 0.97
T9 70.60 35.38 17.60 8.86 4.41 2.24 1.08
T10 78.29 39.21 19.50 9.83 4.92 2.49 1.20
T11 86.31 43.27 21.46 10.82 5.44 2.73 1.33
T11 93.44 46.84 23.28 11.70 5.88 2.95 1.43
TLD 100.00 50.16 24.91 12.52 6.28 3.15 1.53

Table 7.4: 146/8-[Jan - Mar]: Random Cumulative % Summary Table

Timeline /24 /e25 /e26 /e27 /e28 /e29 /e30

T0 1.34 0.66 0.34 0.17 0.09 0.04 0.02
T1 8.78 4.37 2.20 1.12 0.56 0.27 0.13
T2 19.54 9.74 4.86 2.46 1.25 0.61 0.31
T3 26.68 13.32 6.63 3.34 1.69 0.84 0.41
T4 34.19 17.06 8.51 4.25 2.16 1.06 0.53
T5 41.56 20.78 10.36 5.17 2.63 1.29 0.64
T6 48.97 24.45 12.21 6.11 3.09 1.53 0.76
T7 56.58 28.31 14.12 7.08 3.57 1.77 0.88
T8 63.51 31.80 15.85 7.93 4.00 1.98 0.98
T9 70.60 35.32 17.61 8.82 4.46 2.20 1.09
T10 78.29 39.16 19.51 9.79 4.94 2.43 1.20
T11 86.31 43.15 21.54 10.79 5.46 2.68 1.33
T12 93.44 46.72 23.34 11.69 5.89 2.89 1.44
TLD 100.00 49.97 24.97 12.52 6.32 3.10 1.54
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Due to this duality of presentation, the explanation in this section will accommodate both
the tables and the figures as they speak of the same data. Recall that the subnet and
subnet equivalent represent different sizes of network telescopes, with subnets representing
sequentially collected DSTIPs while subnet equivalent representing randomly sampled
DSTIPs. Recall that T0 in the tables represent week zero (also referred to as the first
day of observation) while TLD represent the last day of observation. Apart from TLD, the
spacing between the timeline in the tables (i.e. between T0 and T1) was placed to 7 days
which represent a week. Thus when this study mentions T3 for example, it is referring to
observations made in week 3. TLD was included because the study had to show when all
the unique SRCIPs were observed. In all network telescopes, the total amount of unique
SRCIPs was found on the last day of each month. In other words, any user who observes
less than a month is likely to miss some unique SRCIPs as some of these unique SRCIPs
only appeared once in the last day.

The proportion of the number of unique SRCIP observed at specific times for different
network telescopes is similar. For instance, in all the cases presented in Tables 7.3
and 7.4, it took about two weeks (T2) in each of the baseline datasets to observe about
20% of the total number of unique SRCIP addresses collected. To observe the same 20%
proportion in a /25 or /e25 network telescope, one would need to observe for at least
five weeks (T5). It takes almost 10 weeks (T5) to observe the same proportion (20%)
for /26 or /e26 network telescope. Essentially, small network telescopes take a longer
period to observe the same amount of traffic that can be observed in a larger network
telescope. This can also be deduced from Figures 7.1b and 7.2b. Only the baseline
dataset collected a total number of unique SRCIPs. Thus, using Tables 7.3 and 7.4, a
network telescope user can tell how long it would take to observe any specific proportion
and be in a position to tell the effect that the size of a network telescope has on the
amount of SRCIPs collected by each size. Any proportion can be used to explain the
results. Here, 20% is just being used as an example.

If these small sized network telescopes can be monitored for longer, they should be able
to acquire the same capacity as the large sized network telescopes. If the observation
period between large and same sized network telescopes is the same, then the small sized
network telescopes are bound to collect significantly less data. This scenario is true when
experimental set up was not normalised. However, the normalised datasets present these
findings differently by presenting very identical results as can be seen in Figures 7.1a
and 7.2a. As explained earlier, the normalised datasets were computed against their total
count.
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Regarding the differences between random and sequential sampling of DSTIPs, the study
did not observe significant differences as can been from both Figures 7.1 and 7.2, and
Tables 7.3 and 7.4. However, following the recommendations made in Section 6.5, the
study maintains its recommendation that random placement of unique DSTIPs should
be the first priority. These findings observed in Network telescope 146/8 are not unique
to this network telescope as the study also shows results observed in Network telescopes
196-A/8 and 155/8. Figures 7.3 and 7.4 show quarterly time series plots that portray
a similar pattern as that observed in Network telescope 146/8.

(a) Normalised (b) Not Normalised

Figure 7.3: 155/8 -[Jan - Mar]: Unique SRCIPs over time [Sequential]

(a) Normalised (b) Not Normalised

Figure 7.4: 155/8 -[Jan - Mar]: Unique SRCIPs over time [Random]
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Table 7.5: 196-A/8-[Jan - March]: Sequential Cumulative % Summary Table

Timeline /24 /25 /26 /27 /28 /29 /30

T0 1.32 0.65 0.34 0.16 0.08 0.05 0.02
T1 8.90 4.47 2.23 1.10 0.56 0.27 0.14
T2 19.03 9.56 4.74 2.36 1.19 0.58 0.30
T3 26.18 13.13 6.53 3.27 1.63 0.81 0.42
T4 33.84 16.97 8.45 4.22 2.12 1.06 0.53
T5 41.51 20.76 10.35 5.20 2.63 1.30 0.66
T6 49.10 24.57 12.26 6.13 3.10 1.55 0.78
T7 56.87 28.44 14.19 7.13 3.59 1.79 0.90
T8 63.92 31.98 15.94 8.03 4.02 2.01 1.01
T9 70.95 35.51 17.68 8.92 4.46 2.23 1.12
T10 78.55 39.35 19.55 9.86 4.93 2.46 1.24
T11 86.46 43.32 21.54 10.86 5.41 2.71 1.36
T12 93.60 46.90 23.30 11.77 5.87 2.93 1.47
TLD 100.00 50.12 24.89 12.55 6.26 3.14 1.58

Table 7.6: 196-A/8-[Jan - March]: Random Cumulative % Summary Table

Timeline /24 /e25 /e26 /e27 /e28 /e29 /e30

T0 1.32 0.66 0.33 0.16 0.08 0.04 0.02
T1 8.90 4.44 2.23 1.11 0.54 0.28 0.13
T2 19.03 9.76 4.93 2.48 1.22 0.63 0.30
T3 26.18 13.34 6.72 3.38 1.66 0.84 0.41
T4 33.84 17.08 8.59 4.32 2.13 1.06 0.53
T5 41.51 20.80 10.39 5.26 2.59 1.30 0.64
T6 49.10 24.54 12.30 6.21 3.08 1.52 0.76
T7 56.87 28.32 14.18 7.18 3.54 1.76 0.87
T8 63.92 31.76 15.92 8.07 3.97 1.98 0.98
T9 70.95 35.32 17.70 8.98 4.42 2.20 1.09
T10 78.55 39.17 19.61 9.92 4.90 2.45 1.21
T11 86.46 43.11 21.58 10.92 5.41 2.71 1.34
T12 93.60 46.73 23.38 11.82 5.86 2.92 1.45
TLD 100.00 50.02 25.01 12.65 6.27 3.14 1.56

These findings are true for both normalised datasets and those that were not normalised.
On the other hand, Tables 7.5 and 7.6, show results observed in 196-A/8 Network
telescope. By the ninth week (T9), both 146/8 and 196-A/8 had observed about 70%
of the total unique SRCIP received. In Table 7.4, the study showed that TLD for /e27
was 12.52 %, while in Table 7.6, TLD for /e27 is 12.65 %. Whatever value is picked from
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any network telescope when compared against a different network telescope, on the same
sized network telescope, the difference is less than 1%.

Now this is some actionable intelligence that one can work with when it comes to planning.
Using the proportions presented and the timeline involved, any network telescope user
can compute the actual count of unique SRCIPs collected in their network. The crucial
part is also on how these findings, in particular the proportions, collaborate with the
findings observed in Section 7.1. A network telescope user can use the timeline presented
here and the estimated proportions coupled with the CI provided in Section 7.1 to
compute the estimated amount of unique SRCIPs they may have missed out and impute
the difference to make estimates. The study extended the experiments by conducting
a monthly analysis with the aim of understanding the relationship between the sample
size and the timeline it takes for each of the samples to collect the maximum amount of
unique SRCIPs. Figure 7.5 shows the graphical representation of monthly data for 196-
A/8 Network telescope. The pattern observed is similar to that observed in quarterly
data. Adding the monthly datasets to the analysis of the time series plots shows that
the duration of collection and size of the network telescope affects the proportion of
the unique SRCIP addresses collected. A longer duration will still collect more unique
SRCIPs than a smaller duration, and larger network telescopes will still collect more
threat intelligence than smaller network telescopes. Two network telescopes of the same
size that are monitored for the same duration can show a similar proportion but have
different actual count of unique SRCIPs.

(a) Normalised (b) Not Normalised

Figure 7.5: 196-A/8-012021: Systematic Time Series Plot of Unique SRCIP/DSTIP
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Table 7.7: 146/8-012021: Sequential Cumulative % Summary Table

Timeline /24 /25 /26 /27 /28 /29 /30

T1 3.45 1.73 0.86 0.44 0.20 0.10 0.06
T1 22.89 11.63 5.60 2.83 1.41 0.71 0.37
T2 50.43 25.39 12.52 6.29 3.12 1.60 0.75
T3 69.53 34.89 17.36 8.75 4.28 2.16 1.04
T4 90.02 45.20 22.41 11.26 5.64 2.81 1.35
TLD 100.00 50.14 24.95 12.51 6.28 3.12 1.50

Table 7.8: 146/8-012021: Random Cumulative % Summary Table

Timeline /24 /e25 /e26 /e27 /e28 /e29 /e30

T0 3.45 1.70 0.87 0.44 0.23 0.11 0.05
T1 22.89 11.38 5.74 2.91 1.45 0.70 0.35
T2 50.43 25.11 12.54 6.34 3.22 1.58 0.80
T3 69.53 34.65 17.29 8.69 4.39 2.19 1.09
T4 90.02 44.91 22.42 11.19 5.69 2.80 1.40
TLD 100.00 49.98 24.96 12.44 6.33 3.11 1.55

Table 7.9: 155/8-022021: Sequential Cumulative % Summary Table

Timeline /24 /25 /26 /27 /28 /29 /30

T0 4.47 2.23 1.14 0.54 0.29 0.14 0.07
T1 26.01 13.03 6.50 3.20 1.61 0.84 0.44
T2 50.30 25.22 12.65 6.20 3.09 1.63 0.78
T3 75.01 37.66 18.78 9.26 4.68 2.37 1.17
T4 100.00 50.19 25.03 12.38 6.21 3.13 1.57

Table 7.10: 155/8-022021: Random Cumulative % Summary Table

Timeline /24 /e25 /e26 /e27 /e28 /e29 /e30

T0 4.47 2.21 1.12 0.56 0.28 0.15 0.07
T1 26.01 13.07 6.52 3.24 1.67 0.80 0.43
T2 50.30 25.22 12.55 6.36 3.18 1.57 0.79
T3 75.01 37.56 18.69 9.54 4.73 2.35 1.17
T4 100.00 50.04 25.01 12.70 6.31 3.12 1.59
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As with the quarterly data, Figure 7.5 is supported by Tables 7.7 - 7.10. January
and February data from 146/8 and 155/8 network telescope are used. Due to the short
duration of observation, the proportion of unique SRCIP observed on weekly basis has
slight increased. For instance, in quarterly observation T2 showed less than 20 % of unique
SRCIP observed, while in monthly data (Tables 7.7 - 7.10), T2 shows at lease 50 % of
the total amount. This does not mean that monthly data contain more unique SRCIPs
as compared to quarterly data. It simply means that small periods of observation have
high proportions per observable period. Observable period in this research was a week.

Furthermore, the study also observed that, at the beginning of each collection period (be
it one month or three months), there were a handful of unique SRCIP addresses that were
responsible for the large proportion of traffic sent to the network telescopes. The study
had initially assumed that at the beginning of the data collection period, there will be
a lot of unique SRCIP which will eventually phase out and that, before the last date of
data collection, all the unique SRCIP will have been observed. However, from the plots,
one can note that there was a steady increase in the unique SRCIPs added to the network
telescope. New unique SRCIPs kept on appearing in the network until the last day of
data collection. This is true for both monthly and quarterly observations. Three weeks
into the data collection for the month of January and February for 146/8 and 155/8
network telescope, about 70% of the total number of unique SRCIPs had been observed.
It took nine weeks for the same proportion of unique SRCIPs in quarterly datasets.

Thus, using the time series plots and the tables presented in this section, one can decide
how long they would want to observe network traffic in their network in order to collect
a certain proportion of the overall parameter of interest. Depending on the volume of
unique SRCIPs that they would want to their research, they would observe for that
duration using their network telescope. Thus the tables presented in this section offer the
artefacts that any network telescope user can use to understand how long it would take
to observe specific proportions of unique SRCIPs. In addition to this, the artefacts also
help a network telescope user in understanding how the specific proportions are affected
by the different sizes of the network telescope. Overall, the reader will note that having
gone through the tables and plots, the major take away is that the progression over time
is similar in all network telescopes at any given point
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7.3 Cross Disciplinary Application of the Models

Having looked at the models developed for the IBR datasets and how they performed in
Chapter 6, the study opted to lay out the cross disciplinary applications of these models
in the real world. One of the main discoveries during the experimental stages was a clear
understanding that these models are multi-disciplinary in nature. This means that the
applications of the models are not limited to computer science or IBR data, but they
can also be used in other fields like Biology, Chemistry, Physics, Statistics, population
studies, geology, and in the medical field, among others. Any specialised field that works
with statistics, sampling, and data samples has the opportunity to benefit from these
models and assess how the various samples they have taken from a baseline (original
data) relate to each other, and the primary data. It does not even have to be time-series
data, however, it needs to have a series of data points per sample. The guiding principle
here is the ability of the researchers to be able to standardise the various data samples
to a well-known unit of measurement. In this study, the unit of standardisation was the
number of unique DSTIP addresses found in a subnet or subnet equivalent.

Thus in this section, the study looked at how the derived models can be applied to some of
the research fields. In establishing the usability of the models in the various fields described
in this section, the primary investigator conducted a series of informal discussions with
researchers who are experts in their respective fields. These are researchers who are either
doing their post-doctoral research or lecturing, or are in their final year of PhD studies
and have had their work peer-reviewed (published articles). This approach was opted for
because of the knowledge base of the participants being engaged, which cannot be found
in one or two papers, but after years of experimental work. That way, the author got to
appreciate what role the developed models can do in each of these fields. The author also
had to verify the methods used, hence adding the footnote to support their narrative.
The fields presented in this section are not exhaustive, but they are just a sample of the
fields the models developed can work in and they demonstrate the usability of the models
in a real-world scenario.

7.3.1 Application of the Models in Demography

Demography is the scientific study of human populations primarily with respect to changes
in their size, structure and development over time (Rees, 2020). The people involved in
this study are called demographers. They use data collected about a specific population
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or groups at a point in time with respect to well-defined characteristics (this data is
referred to as census data). The overall objective is to understand populations’ dynamics
(structure and change), the factors behind their dynamics, and the consequences of these
changes to the entire population.

At any given point in time, each population is distinguished by the number of people it
has (size) and the population composition, which constitute the age of the population, the
number of males and females, employment status, and level of education, among other
features (Rees, 2020). All these attributes within a population change constantly as peo-
ple arrive (through birth or immigration), while others depart from the same population
through death or emigration. There are a lot of other statistical variables that demog-
raphers analyse in order to make well-informed decisions. Among such variables include:
calculating fertility, mortality and migration rates by sex and age in order to identify the
functions (in the mathematical sense) of fertility, mortality, and migration that determine
change in a population1.

By understanding these variables, coupled with population models, demographers come to
a clear understanding of the relationship between the demographic structure of different
populations given their distinctive features (Rees, 2020). Thus, demographers use census
data, surveys, and statistical models to analyze the size, movement, and structure of
populations at that particular point in time in order to make predictions and projections
in line with the resources available to that population2. Decisions are made by countries
or organisations based on such findings.

The census data can equally be treated the same way as IBR data since it also has distinct
features that define it. For instance, census data has a time stamp making it fit in the
category of time series data. Secondly, demographers use this data to make predictions,
thus MAPE, SMAPE, MASE and MAE can be used to make forecasts with this data.
However, there is one component that may need to be looked at; how representable
different samples within a population are to the overall census data. This is where surveys
come in since they only focus on sample populations. Usually, this happens because of
financial limitations, and so a handful of people in a country are picked. It could be based
on districts, villages, or cities. In order to verify how accurately the survey data collected
represents the interest of the entire population, AMAPS, SAMAPS, SMAE and SMASE
can be deployed to this data.

Firstly, they will need to identify which unit of standardization they will need to use for
1https://iussp.org/en/about/what-is-demography
2https://iussp.org/en/about/what-is-demography
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this data. They could use the number of individuals per household to standardise survey
data and verify how this compares with the census data. They could also use the number
of deaths per square kilometre in order to assess how death is affecting the population.
They could use the number of educated people either within a household or a specified
area as a standardisation unit. Once they find the standardisation unit, they can apply it
to see how well the sample contained in the survey data represents the census data. There
are many features that the demographers can use to standardise survey data to make it
comparable to census data, but once this step is accurately done, AMAPS, SAMAPS,
SMAE and SMASE can be deployed. Due to the statistical nature of demography, by
virtue of using this example, the models do apply and fit in the discipline of statistics, a
field that has proven to be vital across all scientific fields.

7.3.2 Application of the Models in Ichthyology

Ichthyology is the branch of zoology that is dedicated to the study of various kinds of
fish with the aim of understanding their biological make-up, taxonomy, and conservation
(Kapoor and Khanna, 2004). The study also extends to husbandry and commercial fish-
eries. Like all animals, fish also have their own dynamics that get to affect their own
livelihood. These include: diseases that are very specific to certain breeds, extinction
of certain species from specific water bodies, crossbreeding, and the life expectancy of
different breeds, among others (Kapoor and Khanna, 2004). These are just some of the
dynamics that researchers in ichthyology get involved in. In order to tackle some of these
problems, a full study has to happen.

In this study, the primary researcher had an informal discussion with one of the PhD stu-
dents who was involved in collecting data from different countries in order to understand
why certain breeds of fish are disappearing in certain areas while the same breeds are
thriving in other parts. In this interview, the researcher went on to argue that different
areas get to be affected differently depending on the variables they have found in a specific
area. For instance, some ponds or water bodies tend to have a lot of species of fish while
others have very few of the same species. In the process of crossbreeding, new kinds tend
to formulate while others tend to disappear. The size of the pond also has an effect on the
survival and extinction of fish as well as their life span. He went on to state that there are
also certain kinds of diseases that can only affect certain species while others tend to be
immune to the same disease. So in the process of collecting data from various locations,
they are able to understand how all these variables affect the fish in all of these locations.
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Our main interest in this conversation was to try to understand how he is able to compare
these different samples given that the areas are different. The interviewee iterated that,
in order to compare samples collected from different locations, certain parameters have
to be uniform. For instance, the number of fish of a specific kind collected per given size
of the bond has to be the same; meaning that the size of the pond, as well as the species
of fish collected, has to be the same. Secondly, the fish involved in the cross-breeding
need to be of the same age as well as species i.e. if a fish belonging to family A and B
were collected at one location, he needs to find another pond (or water body) that has
the same kind of species and the same size of the water body in order to make the results
comparable. The last question the student was asked was on whether these results can be
interpolated to represent a whole area. He cautiously responded that if they are limited
in terms of finances, then they are forced to interpolate the findings from one water body
to represent the whole area.

Using this interview with this researcher, we also saw how the developed models can
be of use in Ichthyology. For starters, the data collected here by the student had no
time stamp. In other words, time did not have a bearing on his findings. Secondly, in
the interview it was clear which unit of standardisation can be used specifically for his
study. He mentioned that the size of the pond, as well as the number of fish that belong
to a specific species, need to be taken into account in order for different samples to be
comparable. Thus using AMAPS, SAMAPS, SMAE and SMASE, an ichthyologist can
standardise the data collected and evaluate how the different samples collected from the
different locations compare to each other. That way, before making extrapolations, the
researcher can know with some degree of certainty (accuracy scores from AMAPS and
SAMAPS) how the different samples compare to each other and the errors involved. Using
SMAE and SMASE, the researcher will know for sure if the samples properly represent
the data collected from the area of origin if SMAE and SMASE scores are below the value
of 1.

7.3.3 Application of the Models in Biochemistry

Biochemistry is a branch of science that explores the chemical processes happening at
a molecular level within living organisms by conducting a series of laboratory experi-
ments and joining knowledge and techniques from biology and chemistry in order to solve
real-world biological problems (Banani et al., 2017). Biochemistry focuses on what’s hap-
pening inside our cells by studying components like proteins, lipids, and organelles3. It

3https://www.mcgill.ca/biochemistry/about-us/information/biochemistry
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also looks at how cells communicate with each other, for example, during growth or when
fighting illness. Biochemists (people who study biochemistry) need to understand how the
structure of a molecule relates to its function, allowing them to predict and understand
how molecules will interact (Banani et al., 2017). Biochemistry covers a range of scientific
disciplines, including genetics, microbiology, forensics, plant science, and medicine4. Be-
cause of its breadth, biochemistry is very important, and advances in this field of science
over the past 100 years have been staggering5.

This research’s primary investigator engaged with one of the researchers in the field of
biochemistry, who specialised in developing chemical compounds (drugs) for diabetes, and
also does intensive work with cancer research. In the interview with this researcher, the
primary interest was in understanding how data sampling works in their field: where they
get the samples, how many samples constitute a full study, and more importantly, how
they compare multiple samples. This researcher explained his position using an example
of diabetes where they collect saliva, for example, as a single sample. They would collect
multiple samples from different individuals with the same type of diabetes. However, he
did mention that even when the samples are from the same diabetes type, things like the
time the patient ate their last meal before the sample was collected, age, sex, among other
variables, need to be taken into account. These all form part of the analysis. However,
assuming that all these variables are the same, there is also the part where each individual
is different from the next, and that creates new variables altogether.

This now led us to ask the main question: how then does one compare the different samples
from different individuals? How is the data collected from the experiments standardised?
He went on to explain that, the standardisation happens with the chemical compound
(drug) they are developing. They make sure that all the data samples collected are treated
equally by ensuring the concentration of the chemical compound used as the treatment
is the same. From the concentration, they also assess the time taken by the compound
to achieve the intended results using the same concentration for all samples. They also
ensure that the volume of the chemical compound created (which is the main output of
the experiment) is kept constant for all the samples being tested.

Thus for biochemistry, one way of ensuring that the data collected from different samples
is comparable is by making sure that the different samples are given the same volume of
the chemical compound being developed as treatment, but also ensuring that the level of
concentration is the same for all samples. In other cases, they collect multiple samples

4https://biochemistry.org/education/careers/becoming-a-bioscientist/what-is-biochemistry/
5https://biochemistry.org/education/careers/becoming-a-bioscientist/what-is-biochemistry/
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for the same individual, but ensure that they assess how the volume of each chemical
compound developed is treated by the cells of this individual. Alternatively, they assess
how the different levels of concentration affect the treatment being offered to the specimen
under study. In all of these cases, there is standardisation involved, and once a well-known
method of standardisation is applied to the data, it will offer biochemists an opportunity
to find new ways of quantifying the performance of the developed treatment on various
samples. This allows them to compare multiple samples by using AMAPS, SAMAPS,
SMAE and SMASE to quantify the differences. Note that this is just one way with which
data is standardised in this field and also one way with which they deal with data samples.
Biochemistry is a broad field and thus the applications of this model in this field are only
as variant as the ability of the biochemist to find ways of standardizing the data.

7.3.4 Application of the Models in Geology

Geology is the study of the Earth, the materials of which it is made, the structure of those
materials, and the processes acting upon them (Dai and Finkelman, 2018). It includes the
study of organisms that have inhabited our planet. One of the core elements in the study
is how Earth’s materials, structures, processes and organisms have changed over time.
However, their time is not measured as is done in other fields that work with changes in
20 or 5 years, or months. In geology, they deal with millions or billions of years (Friederich
and van Leeuwen, 2017), referred to as geologic time6. In such a setup, time series analysis
would not fit. However, through the processing of their data, they get to have a series of
data points that take even years to process.

In the process of assessing how the developed models work, we engaged one of the geolo-
gists who has worked in the field for over 15 years before moving into academia. He gave
us an example of how the sampling works when they are processing coal as he believed
it would be less complicated to explain without a lot of jargon. He gave an example of a
process they refer to as proximate analysis, which tends to measure four core elements:
calorific value, moisture content, ash content, and volatile matter (Nunes et al., 2018).
Usually, this analysis is done when an investor is trying to assess which coal has the best
of the four elements among samples from multiple sites.

All these variables are critical because an investor would set specific values for each of
these elements. The value they set becomes the standard with which the geologist will

6https://www.livescience.com/why-geolotic-time-periods.html
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have to work with in all the multiple sites. In each area, they look for things like the
amount of weight needed to get to use for a series of experiments. The size of the area
where the coal was taken from is also considered. After a series of experiments from the
numerous samples they collected from different areas, they will need to do a comparative
analysis to assess how the different samples compare to each other before a final decision
is reached for the investor. This is where AMAPS, SAMAPS, SMAE and SMASE can
be used to quantify the differences in different areas. Thus the models become an extra
statistical tool to aid in the analysis. One of the reasons geologists are heavily involved
in sampling is to cut on costs, and thus being certain of their decision is key. As such,
having more tools to quantify the difference adds more confidence to both the investor
and the geologist.

7.4 Summary

In this chapter, some of the practical applications of the research findings were presented.
An important element to note is how the applications presented herein are not only limited
to the use of network telescopes, but go beyond that. This chapter covered concepts from
Chapters 5 and 6.

The chapter starts off with Section 7.1 by presenting how bootstrapping can be applied
to IBR data with the aim of offering levels of confidence to users. The confidence revealed
by the dataset is what the network telescope user would need in order to make informed
decisions. From here, the study presented different scenarios relating to the efficiency of
different network telescope lenses in collecting threat intelligence data over different time
frames. This is presented in Section 7.2. In this section, the study was offering practical
scenarios that come with using different network telescope lenses and the effect that time
had over such collection periods. The chapter closed by offering an external application
of mathematical models that were developed to quantify differences that exist between
different network telescope lenses. The idea behind this is to open a wider perspective
to the applicability of the models developed and the knowledge gap that it closes. All of
this is presented in Section 7.3.



8
Conclusion

This research evaluated the effectiveness of using small aperture network telescopes as
IBR Data sources. This was achieved by assessing three different network telescopes that
recorded a total of 108,309,459 events from January 2021 to March 2021. Note that the
results presented in this document only accommodate the findings of the final analysis
of the study. To achieve the objectives set at the beginning this research, the study
used both randomly and sequentially sampled datasets in order to create subnets and
subnet equivalents. These represented different sizes of network telescope sensors. The
researcher was fully aware that any data sample taken from the baseline dataset cannot
fully replace the baseline data. In this case, a sample of /24 IPv4 cannot replace its
baseline dataset. However, finding alternative small sized network telescopes that offer
a high level of confidence by drawing samples from the baseline would be a better fit as
compared to completely stopping the use of network telescopes for those who do not have
adequate IP addresses. The argument in this research document has been that a small
sized network telescope can be used to collect IBR data which can later be processed into
threat intelligence. Largely, this motivation was inspired by inadequate IPv4 addresses
that can be used for passive monitoring.
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To achieve the research objectives of this study, a number of analyses were conducted in
order to quantitatively state how well the smaller network telescope lenses represented
the /24 IPv4 baseline dataset. In order to successfully quantify the differences that
exist between the baseline and subnet/subnet equivalents, four mathematical models were
applied (AMAPS, SAMAPS, SMAE and SMASE). In Section 6.4 the study showed that
smaller subnets can represent the content of the baseline datasets with up to 95% accuracy.
The study also simulated IBR data to add levels of confidence to the users. Computations
of CI range from 80% to 99%, confident that if the experiment set was repeated multiple
times the outcome will fall with the same interval. The study also presented a model that
shows the effect that time has when it comes to threat intelligence gathering.

This chapter thus concludes this research by offering a quick recap of what has been
covered in Section 8.1. This is immediately followed by an evaluation of the research
objectives in Section 8.2. This was done to assess the extent to which these goals were
met in addressing the research questions. The study’s recommendations are also added in
this section. Research contributions are presented in Section 8.3 and thereafter, future
work based on the work done in this study is presented in Section 8.4

8.1 Document Summary

This document began by introducing the research problem and offered adequate back-
ground to the research questions in Chapter 1. This chapter also laid down the research
objectives and research approach to be followed. This is followed by Chapter 2 which
provides a literature review on network telescopes and the necessary terminology needed
to justify the use of a small-sized network telescope. This chapter also introduced the
nature of the data used in this study i.e. time-series data. It explains how IBR data
is collected and explains why it is important. The chapter builds further details on the
research problem by explaining the current crisis of IPv4 exhaustion.

In Chapter 3, the study introduced the statistical techniques that were used in this
research. Mostly, this chapter laid down the theoretical foundation from which the
mathematical models were derived. Data sampling, bootstrapping, confidence interval,
mathematical modelling, regression analysis, and information retrieval techniques were
all introduced and an explanation was offered on how they were used. Similarity scor-
ing techniques, which form the core of the quantification techniques in this study, were
explained here as well.
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Chapter 4 introduced and explained all the datasets that were used and where the data
was collected from. How the data was processed and the data sampling techniques used
in this study were also explained in this chapter. Summary statistics of the data and its
graphical representations were presented here as well. A breakdown of the datasets and
their composition also formed part of this chapter.

Chapter 5 presented a simulation technique called bootstrapping. An explanation of why
this was important to this study was presented. A research approach of how bootstrap-
ping was conducted was also explained here. This chapter further presented a regression
analysis and how confidence intervals computed through bootstrapping can offer confi-
dence to the network telescope user. This is also where parametric and non-parametric
bootstrapping techniques were implemented and their results explained.

Chapter 6 started with the mathematical models that were developed to answer some of
the research questions. An approach that was used to process and test the data against
these developed models was presented here. Intense testing and evaluation against existing
models were also conducted in this chapter. This study primarily focused on DPORTs and
unique SRCIP addresses. Sequential and random datasets, collected both monthly and
quarterly, were presented here. The chapter also presented the strengths and limitations
of the mathematical models developed.

Having conducted multiple analyses on the datasets using various techniques, the study
presented some of the practical applications that this study has offered to the research
community in Chapter 7.

8.2 Evaluation of Research Goals

In Section 1.3 this document laid out the objectives that it aimed to achieve in order to
measure its success or failure. These included evaluating small aperture network telescopes
for threat intelligence gathering using IBR data. This section thus evaluated the degree
to which these objectives have been met.

1. The first goal set out was to assess whether there is a continual direct relationship be-
tween the number of unique SRCIP addresses observed against the number of unique
DSTIP addresses after normalization. It was found that large subnets (which rep-
resent larger, more traditional network telescope sensors) still collect more unique
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SRCIP addresses than small-sized network telescopes. This has been presented in
Sections 6.4, 6.5 and 7.2. However, when the datasets are normalised based on
the size of the subnet, this study found that although larger subnets and subnet
equivalents collected more unique SRCIP addresses than small-sized network tele-
scopes, the proportion of the number of unique SRCIP addresses is independent of
the size of the network telescope.

2. The second research objective was to compute the time frame needed to acquire spe-
cific proportions of the unique SRCIP addresses from the baseline data. The study
presented plots that measured (show) the proportion of unique SRCIP addresses
collected over time in Section 7.2. The plots show both random and sequential
samples and different network telescope lenses. The study presented two different
datasets; one for a month and another spanning over three months. To support
the time series plots (see Figures 7.1 - 7.5 in Section 7.2), the study presented
its findings in Tables 7.3 - 7.6 for quarterly data and Tables 7.7 - 7.10 for
monthly data as artefacts that address this research objective. In each case, a net-
work telescope user can know the proportion of unique SRCIPs collected by their
network telescopes at any given point in time of data collection. Thus a network
telescope user can compute the time frame needed to collect a specific proportion of
unique SRCIPs for any network telescope sensor size. The study found that in both
monthly and quarterly datasets, new unique SRCIPs were present until the last day
of observation. Larger network telescopes took less time to observe specific propor-
tions of the unique SRCIPs than small-sized network telescopes. i.e. larger network
telescope sensors collect more data than small-sized network telescopes. Although
the percentage proportions of unique SRCIPs are very similar for different network
telescopes in their observation period, the actual count of unique SRCIPs in the net-
work telescopes is different. This is true for different networks as well. With these
findings, the study recommended in Section 6.5 that longer period of observation
should be considered as the findings shows that given more time small-sized network
telescopes can amass unique SRCIPs.

3. The third objective of this research was to identify how accurate a small-sized net-
work telescope lens is at representing /24 IPv4 network telescope. The study identi-
fied that different network telescope lenses offer different levels of confidence in the
data collected. Small-sized network telescope lenses offer small confidence intervals
than larger network telescope lenses. Thus, based on the level of confidence offered
by different sized network telescopes, a user can pick which one is convenient for
them so long as they know how much data they would be missing out on. The confi-
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dence interval and level shows the network telescope user that if they were to repeat
the same experiment multiple times, this study is confident that using the identified
confidence level the CI will fall within the same range. In Section 5.5, the study
presented different CIs computed at different levels with 95% CI - 99% CI being rec-
ommended. The recommendations for bootstrapping IBR data and the confidence
level to be used are presented in Section 5.7. An artefact from bootstrapping was
presented using Tables 5.19 and 5.20 in Section 7.1. The CI computed offers
the desired confidence a user needs to have prior knowledge to decide which size is
convenient for them. It is this CI that necessitates whatever decision needs to be
made. In Chapter 6, the study quantified the differences that exist between differ-
ent network telescope sizes. The smallest sized network telescopes offered at least
92% similarity to the baseline, while the largest (/25 subnet or /e25) offered at least
98% similarity with the baseline. This is when the datasets are normalised using
the size of their subnet. Randomly sampled unique DSTIPs gave better scores than
sequential samples, thus in Section 6.5, the study recommended random placement
of DSTIPs in a network telescope as opposed to sequential placement. The actual
differences have been presented in Section 6.5. In the same section, the study
recommended that network telescopes should not contain less than 32 DSTIPs be-
cause acceptable scores for SMAE and MAE ought to be below 1. The advantage of
random placement is that a network telescope user does not need reserve contiguous
block to use for monitoring traffic.

4. Lastly, this study planned to evaluate the differences that exist when the IPv4 ad-
dresses in the network sensors are randomly selected compared to when the IPv4
addresses are selected in contiguous blocks. In order to achieve this, mathematical
models were developed to quantify the differences that exist between the baseline
and the subnet or subnet equivalent. Using the number of unique SRCIP/DSTIP
as the basic unit of analysis, the study concluded that randomly sampled datasets
performed slightly better than contiguously sampled datasets (sequential samples).
In Section 6.4, the study showed both graphically and quantitatively that subnet
equivalents performed slightly better than subnets. This, in part, could largely be
attributed to the almost even distribution of unique SRCIP in the subnets. For
AMAPS and SAMAPS scores of accuracy, randomly sampled DSTIP addresses
recorded as high as 99.15% accuracy match with the baseline dataset for /e25 while
/25 subnet for the same datasets recorded a 98.41% match with the /24 IPv4 base-
line dataset. The smallest samples from /30 subnet recorded 90.76% accuracy match
with the baseline for AMAPS and SAMAPS while /e30 recorded an accuracy score of
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94.19%. Thus in Section 6.5 the study recommended random placement of DSTIPs.

8.3 Research Contribution

The findings of this research have been published in a number of conferences. The pa-
pers published include Chindipha and Irwin (2017); Chindipha et al. (2018, 2019a,b);
Chindipha and Irwin (2021). The primary research contributions made by this study are:

1. The development of four mathematical models (AMAPS, SAMAPS, SMASE and
SMAE) that quantify the variations that exist between different samples. These
models have been presented in Section 6.1. The benchmark for their formulation
was laid out by Hyndman and Koehler (2006) when they designed mathematical
models to be used to forecast time series data. However, in this research document,
this study derived novel models from this that can now be used on both time series
and data without time stamps. Section 6.8 details how both time series and non
time series data can use these novel models. In addition to this, these models have
a different applications than those intended by Hyndman and Koehler (2006). This
information has been presented in Section 6.1.

2. In Section 7.2, the study has produced time series plots (see Figures 7.1 - 7.5)
that show the expected proportion of unique SRCIP addresses over time. These time
series plots are supported by Tables 7.3 - 7.10. Section 7.2 also explains how the
time series plot and the tables can used by other researchers in the field. Both the
time series plots and the tables are vital for planning purposes as one would know
how many unique SRCIPs can be collected by their different network telescopes in a
specified timeline. Using these artefacts, network telescope users can now calculate
how long it would take them to collect 30% of the unique SRCIPs for example, and
work with that knowing fully well what the data represent. They would also know
how their currently small-sized network would collect in comparison to the baseline
in that same timeline. This would help them to know how long they would need
to monitor their network telescope to get the same amount of data as the larger
network telescopes. In Section 2.4, this research document presented different use
cases of IBR data, thus using the collected unique SRCIPs a network telescope user
can use such the data collected and extract threat intelligence data they ought to
expect in the given timeline. The author of this research document published similar
work of IBR use cases that can be found in Chindipha and Irwin (2017). In this
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paper, Chindipha and Irwin (2017) did an analysis on the re-emergence of the SQL
Slammer worm using IBR data.

3. The study has successfully quantified the differences that exist between large net-
work telescopes and smaller network telescopes in Section 6.3 and 6.4. It was
known that large network telescopes collect more data than small-sized network
telescopes. However, no study, to the best of the author’s knowledge, has ever
quantified such a knowledge gap. With this additional knowledge to the research
body, small-sized network telescope users can use their network telescopes with full
knowledge of the data gap that exists between different network telescopes.

4. An extension to the aforementioned contribution is the applicability of confidence
interval to the different sizes of network telescopes. With this knowledge, network
telescope users can plan accordingly, knowing what to expect in their different net-
work telescope sizes. Section 5.7 has presented recommendations that this has
made in regard to bootstrapping IBR data while Section 7.1 has presented some
of the practical applications of bootstrapping IBR data. Tables 5.19 and 5.20
presents the thesis’ artefact to be used as guide in computing the averages per given
sample at 95% CI. The confidence level attached to the CI assures the network
telescope user that if they were to repeat the same bootstrapping process to their
data, 95% of the times they bootstrap their data, their results will fall within the
given range (CI).

8.4 Future Work

At the time of conducting this research, datasets from IPv6 network telescopes did not
contain adequate data demanding the study’s attention. Future work could look into
assessing if it is possible to implement the research findings of this study to IPv6. Most
of the work done herein focused on the TCP dataset because it contained the majority
of captured events as discussed in Section 4.1. It would be interesting to observe if a
similar pattern can be observed in UDP and ICMP datasets. In addition to this, future
studies can also look into:

• The current network telescopes that are set up at Rhodes University were designed
to be passive i.e. when TCP traffic comes in, it is not involved in the three-way
handshake as in passive network configuration. The DSTIP addresses are only
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responsible for receiving traffic and nothing more. Future work will aim at ensuring
that the three-way handshake is enabled by ensuring that some DSTIPs respond to
in coming network traffic. This is what Moore et al. (2004) proposed and stated that
an active network telescope configuration is very much possible and collects more
data than a passive network telescope. Moore et al. (2004) referred to these network
telescopes as honeyfarm telescopes because they actively responds to some or all of
the event request traffic using honeypots. This way, more data will be collected,
giving us more data than what the current set-up offers. Note that, currently, about
85% of the traffic is TCP. Thus this set-up would improve the quality of the traffic
collected.

• More analysis could be conducted if a network telescope larger than /24 IPv4 is pre-
sented. This can also be extended to accommodate other Open Source Intelligence
datasets and test the tools developed in this study. It would also be interesting
to compare the results found in Rhodes University’s network telescopes with other
network telescopes. During this study, the researchers attempted to acquire more
testing data from other network telescope operators (like CAIDA) but were not suc-
cessful. Financial constraints also prevented the buying in of more IBR data from
other network telescope users to test such variation.

• Given resources, it would be worthwhile to test the research findings of this study
with interspersed ‘live’ network telescopes of different sizes operated in a different
region. The overall idea behind this study was to ensure that users are able to collect
actionable data using the least possible number of unique DSTIP. This may enable
them to present an actual working concept that could cement the viability of these
findings in a real-world scenario. Questions like how long it takes to collect x amount
of threat intelligence data can be tested in a real-world environment. Building on
the findings of this study, assess the differences in the amount of threat intelligence
data that can be collected by the differently sized network telescope. So far the
study has present unprocessed data that can be collected by these differently sized
network telescopes. Analysing and processing this data to assess if certain threats
identified in the baseline dataset can still be identified in all the small sized network
sensors under study could make a good research study.
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A
Top 20 SRCIP Address

This appendix details the top 20 unique SRCIPs that were observed in this study. Note
that all the tables presented in this appendix have been presented in Section 4.2.1,
however, in this appendix, the study has added the actual count of each of the unique
SRCIP. as in Section 4.2.1, SRCIPs in bold shows that these SRCIPs were present in
all three Datasets for the month that they are presented in. The tables in this appendix
used data that was collected between January - March 2021. The percentage computed
is based in the total amount of traffic for each sensor. Thus for TCP traffic, the total was
based on the total TCP traffic and for UDP traffic it used the total UDP traffic for the
sensor being evaluated. The total count of packets contributed by each network telescope
are also displayed in tables found in Section 4.2.1.
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Table A.1: Top 20 SRCIP Breakdown Based on Volume of TCP Traffic [Jan 2021]

Rank 146/8 146_count % 155/8 155_count % 196-A/8 196_count %

1 92.63.197.97 1,289,048 4.26 92.63.197.97 1,288,809 3.64 92.63.197.97 1,288,581 3.07
2 185.175.93.24 1,103,201 3.65 185.175.93.24 1,154,006 3.26 185.175.93.24 1,153,787 2.75
3 79.124.62.74 720,383 2.38 79.124.62.74 720,384 23 79.124.62.74 720,384 1.72
4 194.26.25.125 687,665 2.27 194.26.25.125 687,669 1.94 194.26.25.125 687,639 1.64
5 194.147.140.41 390,040 1.29 194.147.140.41 395,079 1.12 64.95.96.217 259,399 0.62
6 194.147.140.42 265,500 0.88 178.33.221.97 270,687 0.76 194.147.140.8 252,818 0.60
7 194.147.140.6 252,641 0.84 194.147.140.42 265,595 0.75 193.27.229.47 224,935 0.54
8 45.129.33.128 237,290 0.78 194.147.140.6 252,069 0.71 103.145.13.58 220,622 0.53
9 193.27.229.47 223,317 0.74 45.129.33.128 238,778 0.67 74.106.249.155 219,152 0.52
10 74.106.249.155 219,976 0.73 205.220.231.26 235,611 0.67 45.146.164.211 193,561 0.46
11 103.145.13.58 214,890 0.71 193.27.229.47 223,714 0.63 103.195.100.208 193,465 0.46
12 45.129.33.47 213,379 0.71 74.106.249.155 221,535 0.63 141.98.10.138 183,639 0.44
13 103.195.100.208 193,478 0.64 45.129.33.47 209,556 0.59 194.26.25.13 134,762 0.32
14 45.146.164.211 190,755 0.63 45.146.164.211 193,549 0.55 89.248.160.178 132,405 0.32
15 141.98.10.138 183,410 0.61 103.195.100.208 193,510 0.55 45.146.165.171 129,178 0.31
16 122.228.19.79 173,835 0.57 141.98.10.138 183,492 0.52 93.174.93.123 123,090 0.29
17 64.95.96.217 166,537 0.55 122.228.19.79 173,714 0.49 103.145.13.43 115,955 0.28
18 45.146.165.171 133,920 0.44 64.95.96.217 166,761 0.47 205.220.231.26 112,965 0.27
19 89.248.160.178 133,555 0.44 103.145.13.58 155,482 0.44 161.189.114.127 111,699 0.27
20 194.26.25.13 129,986 0.43 205.220.231.25 153,812 0.43 38.130.221.107 110,597 0.26

Table A.2: Top 20 SRCIP Breakdown Based on Volume of UDP Traffic [Jan 2021]

Rank 146/8 146_count % 155/8 155_count % 196-A/8 196_count %

1 146.88.240.4 287,622 8.01 146.88.240.4 287,309 7.63 196.216.37.82 1,021,138 17.74
2 95.214.52.175 155,741 4.34 95.214.52.175 156,895 4.17 77.247.108.45 445,672 7.74
3 95.214.53.145 119,274 3.32 95.214.53.145 119,436 3.17 77.247.108.35 429,821 7.47
4 69.162.117.142 86,511 2.41 69.162.117.142 84,113 2.24 146.88.240.4 287,207 4.99
5 95.214.54.95 78,373 2.18 95.214.54.95 78,645 29 95.214.52.175 168,297 2.92
6 193.29.14.109 67,999 1.89 104.243.40.37 58,112 1.54 95.214.53.145 119,263 2.07
7 104.243.40.37 58,098 1.62 185.94.111.1 53,176 1.41 95.214.54.95 82,819 1.44
8 80.94.93.24 54,782 1.53 109.248.203.69 51,310 1.36 69.162.117.142 81,977 1.42
9 185.94.111.1 53,165 1.48 95.214.54.161 47,942 1.27 80.94.93.24 60,416 1.05

10 95.214.54.161 48,395 1.35 45.125.65.52 45,926 1.22 104.243.40.37 58,110 1.01
11 45.125.65.52 45,821 1.28 193.29.14.109 41,305 1.10 185.94.111.1 53,176 0.92
12 80.94.93.16 30,800 0.86 80.94.93.16 30,595 0.81 45.125.65.52 51,557 0.90
13 80.82.65.90 30,344 0.85 80.82.65.90 30,359 0.81 109.248.203.69 51,426 0.89
14 213.59.4.26 30,000 0.84 80.94.93.10 29,966 0.80 95.214.54.161 49,292 0.86
15 80.94.93.10 29,671 0.83 72.251.228.101 26,112 0.69 23.148.145.30 40,077 0.70
16 83.97.20.25 29,211 0.81 104.152.52.31 25,600 0.68 193.29.14.109 39,873 0.69
17 193.29.14.125 28,074 0.78 104.152.52.23 25,600 0.68 80.94.93.10 32,577 0.57
18 72.251.228.101 26,368 0.73 122.228.19.79 25,126 0.67 196.192.178.26 31,733 0.55
19 122.228.19.79 26,105 0.73 147.203.255.20 21,666 0.58 80.82.65.90 30,370 0.53
20 104.152.52.26 25,600 0.71 83.97.20.25 19,307 0.51 80.94.93.16 30,063 0.52
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Table A.3: Top 20 SRCIP Breakdown Based on Volume of TCP Traffic [Feb 2021]

Rank 146/8 146_count % 155/8 155_count % 196-A/8 196_count %

1 89.248.165.101 5,668,657 17.50 89.248.165.101 5,652,894 15.72 89.248.165.101 5,650,015 15.71
2 79.124.62.74 1,854,415 5.73 79.124.62.74 1,855,064 5.16 79.124.62.74 1,855,040 5.16
3 79.124.62.234 1,338,862 4.13 79.124.62.234 1,340,499 3.73 79.124.62.234 1,340,525 3.73
4 194.147.140.41 401,659 1.24 194.147.140.41 404,738 1.13 89.190.156.53 511,199 1.42
5 89.190.156.53 303,974 0.94 89.190.156.53 302,676 0.84 45.79.121.175 334,725 0.93
6 194.147.140.42 244,421 0.75 194.147.140.42 248,443 0.69 74.106.249.155 181,419 0.50
7 194.147.140.68 214,189 0.66 205.220.231.26 203,076 0.56 45.146.164.211 175,815 0.49
8 194.147.140.66 198,991 0.61 178.33.221.97 203,002 0.56 89.190.156.52 159,963 0.44
9 194.147.140.70 182,379 0.56 194.147.140.68 198,191 0.55 89.248.160.178 125,636 0.35

10 74.106.249.155 178,717 0.55 194.147.140.66 192,859 0.54 94.232.46.244 124,431 0.35
11 194.147.140.40 176,606 0.55 74.106.249.155 181,064 0.50 89.248.165.104 113,042 0.31
12 45.146.164.211 174,881 0.54 194.147.140.70 176,733 0.49 93.174.93.123 110,019 0.31
13 194.147.140.69 165,107 0.51 194.147.140.40 176,536 0.49 103.145.13.58 104,420 0.29
14 194.147.140.26 161,244 0.50 45.146.164.211 175,720 0.49 89.248.165.53 103,412 0.29
15 122.228.19.79 159,826 0.49 194.147.140.69 174,925 0.49 205.220.231.26 101,526 0.28
16 89.190.156.52 159,702 0.49 194.147.140.26 161,799 0.45 89.248.165.51 101,079 0.28
17 194.147.140.67 150,879 0.47 194.147.140.96 161,660 0.45 194.61.25.194 98,610 0.27
18 194.147.140.96 143,411 0.44 122.228.19.79 160,018 0.45 103.145.13.43 96,439 0.27
19 89.248.160.178 124,997 0.39 89.190.156.52 160,000 0.45 89.248.165.93 93,688 0.26
20 94.232.46.244 123,950 0.38 194.147.140.67 142,746 0.40 45.125.65.105 89,003 0.25

Table A.4: Top 20 SRCIP Breakdown Based on Volume of UDP Traffic [Feb 2021]

Rank 146/8 146_count % 155/8 155_count % 196-A/8 196_count %

1 146.88.240.4 263,347 7.38 146.88.240.4 263,228 79 196.216.37.82 1,916,962 33.32
2 77.247.108.175 255,629 7.16 77.247.108.175 253,870 6.84 146.88.240.4 263,130 4.57
3 77.247.108.74 239,625 6.72 77.247.108.74 240,801 6.49 77.247.108.74 248,225 4.32
4 77.247.108.58 120,845 3.39 77.247.108.58 122,097 3.29 77.247.108.175 243,376 4.23
5 103.145.13.60 60,156 1.69 213.59.4.26 58,500 1.58 77.247.108.58 118,007 2.05
6 185.94.111.1 48,629 1.36 185.94.111.1 48,667 1.31 103.145.13.60 60,120 1.05
7 103.145.13.55 45,308 1.27 103.145.13.55 45,305 1.22 185.94.111.1 48,677 0.85
8 193.29.14.109 43,335 1.21 156.96.156.138 42,496 1.14 103.145.13.55 45,311 0.79
9 156.96.156.138 42,495 1.19 45.125.65.52 33,783 0.91 156.96.156.138 42,496 0.74

10 103.145.13.59 34,047 0.95 80.82.65.90 28,072 0.76 45.125.65.52 36,174 0.63
11 45.125.65.52 33,823 0.95 103.145.13.18 27,643 0.74 38.91.100.237 34,676 0.60
12 80.82.65.90 28,570 0.80 193.29.14.109 26,729 0.72 103.145.13.59 34,040 0.59
13 103.145.13.18 27,644 0.77 72.251.228.101 26,110 0.70 217.182.199.129 32,362 0.56
14 72.251.228.101 26,112 0.73 104.152.52.32 25,600 0.69 193.46.255.20 29,952 0.52
15 104.152.52.28 25,600 0.72 104.152.52.24 25,599 0.69 95.214.53.145 29,806 0.52
16 104.152.52.18 25,600 0.72 122.228.19.79 24,627 0.66 80.82.65.90 28,574 0.50
17 122.228.19.79 25,104 0.70 193.29.14.112 23,432 0.63 103.145.13.18 27,635 0.48
18 193.29.14.127 23,565 0.66 193.107.216.17 23,065 0.62 72.251.228.101 25,853 0.45
19 193.29.14.112 23,435 0.66 89.40.70.237 22,586 0.61 193.29.14.109 25,614 0.45
20 89.40.70.237 22,589 0.63 217.182.199.129 22,515 0.61 104.152.52.34 25,600 0.45



224

Table A.5: Top 20 SRCIP Breakdown Based on Volume of TCP Traffic [Mar 2021]

Rank 146/8 146_count % 155/8 155_count % 196-A/8 196_count %

1 194.147.140.122 1,302,516 3.87 194.147.140.122 1,302,603 3.46 45.93.201.188 1,137,997 3.39
2 194.147.140.126 1,297,916 3.86 194.147.140.126 1,299,723 3.45 82.102.137.130 748,049 2.23
3 45.93.201.188 1,143,559 3.40 45.93.201.188 1,139,971 33 193.27.229.207 368,295 1.10
4 82.102.137.130 762,880 2.27 82.102.137.130 764,487 23 193.27.229.47 346,319 1.03
5 194.147.140.41 469,816 1.40 194.147.140.41 471,380 1.25 89.190.156.52 278,016 0.83
6 193.27.229.207 317,639 0.94 193.27.229.207 366,137 0.97 69.25.114.212 272,886 0.81
7 193.27.229.47 303,293 0.90 193.27.229.47 347,506 0.92 45.155.205.155 233,120 0.69
8 89.190.156.52 280,221 0.83 89.190.156.52 280,064 0.74 89.190.156.53 204,800 0.61
9 69.25.114.212 272,994 0.81 69.25.114.212 273,095 0.73 72.251.228.103 194,984 0.58

10 194.147.140.42 222,687 0.66 45.155.205.155 232,819 0.62 89.248.165.101 194,247 0.58
11 194.147.140.26 213,325 0.63 194.147.140.42 223,010 0.59 45.146.164.211 191,935 0.57
12 45.155.205.155 204,586 0.61 194.147.140.26 212,690 0.57 89.248.165.203 189,977 0.57
13 89.248.165.101 203,308 0.60 89.248.165.101 196,924 0.52 45.146.165.24 177,905 0.53
14 89.190.156.53 175,821 0.52 45.146.164.211 191,929 0.51 103.99.2.190 173,859 0.52
15 103.99.2.190 174,535 0.52 103.99.2.190 176,573 0.47 185.188.182.105 153,588 0.46
16 45.146.165.24 172,099 0.51 45.146.165.24 176,431 0.47 94.232.46.244 147,106 0.44
17 45.146.164.211 171,197 0.51 89.190.156.53 176,128 0.47 41.57.124.37 144,648 0.43
18 185.156.73.67 161,825 0.48 194.147.140.29 167,958 0.45 45.146.164.170 129,416 0.39
19 194.147.140.29 158,771 0.47 185.156.73.67 163,000 0.43 45.125.65.105 129,380 0.39
20 194.147.140.40 158,654 0.47 194.147.140.40 158,658 0.42 89.248.165.104 127,727 0.38

Table A.6: Top 20 SRCIP Breakdown Based on Volume of UDP Traffic [Mar 2021]

Rank 146/8 146_count % 155/8 155_count % 196-A/8 196_count %

1 146.88.240.4 295,019 7.90 103.145.13.75 324,931 6.40 107.148.161.86 4,291,755 27.15
2 103.145.13.131 126,697 3.39 103.145.13.74 299,979 5.90 196.216.37.82 2,347,917 14.85
3 103.145.13.74 94,934 2.54 146.88.240.4 294,991 5.81 103.248.20.30 1,112,395 7.04
4 193.46.255.40 92,160 2.47 103.145.13.131 126,680 2.49 23.27.103.158 882,595 5.58
5 103.145.13.75 79,983 2.14 193.46.255.40 97,660 1.92 103.248.20.21 428,508 2.71
6 103.145.13.167 75,768 2.03 193.107.216.17 74,321 1.46 23.27.103.157 419,184 2.65
7 89.40.70.51 68,790 1.84 103.145.13.167 73,307 1.44 77.247.108.45 378,103 2.39
8 193.107.216.17 68,267 1.83 89.40.70.51 68,789 1.35 103.145.13.75 338,377 2.14
9 103.145.13.78 66,042 1.77 103.145.13.147 67,327 1.33 77.247.108.35 323,305 2.05

10 185.94.111.1 50,310 1.35 45.143.221.110 66,300 1.30 103.145.13.74 314,255 1.99
11 193.29.14.125 43,008 1.15 185.94.111.1 50,380 0.99 146.88.240.4 294,725 1.86
12 89.190.156.53 41,688 1.12 193.29.14.125 43,263 0.85 45.121.107.128 223,170 1.41
13 103.145.13.69 40,190 1.08 89.190.156.53 40,960 0.81 103.145.13.130 126,676 0.80
14 92.204.135.183 34,816 0.93 92.204.135.183 34,816 0.69 193.46.255.40 97,659 0.62
15 209.222.98.168 30,966 0.83 103.145.13.78 31,742 0.62 45.143.221.110 87,520 0.55
16 81.177.143.31 30,000 0.80 209.222.98.168 30,966 0.61 193.107.216.17 79,927 0.51
17 89.248.165.164 28,871 0.77 89.248.165.164 28,546 0.56 103.145.13.167 75,714 0.48
18 103.145.13.77 28,672 0.77 72.251.228.101 26,112 0.51 89.40.70.51 68,896 0.44
19 193.46.254.182 26,368 0.71 104.152.52.30 25,600 0.50 103.145.13.147 67,277 0.43
20 72.251.228.101 26,112 0.70 104.152.52.26 25,599 0.50 103.145.13.78 66,045 0.42



B
Top 20 DPORT address

This appendix details the top 20 DPORTs that were observed in this study. Note that
all the tables presented in this appendix have been presented in Section 4.2.2, however,
in this appendix, the study has added the actual count of each of the unique DPORT. as
in Section 4.2.2, DPORTs in bold shows that these DPORTs were present in all three
Datasets for the month that they are presented in. The tables in this appendix used data
that was collected between January - March 2021. The percentage computed is based
in the total amount of traffic for each sensor. Thus for TCP traffic, the total was based
on the total TCP traffic and for UDP traffic it used the total UDP traffic for the sensor
being evaluated. The total count of packets contributed by each network telescope are
also displayed in tables found in Section 4.2.2

225



226

Table B.1: Top 20 DPORT Breakdown Based on Volume of TCP Traffic [Jan 2021]

Rank 146_dport 146_count % 155_dport 155_count % 196_dport 196_count %

1 23 2,103,448 6.95 445 3,547,173 10.01 37215 8,010,179 19.09
2 22 796,501 2.63 23 2,140,939 6.04 445 4,037,807 9.62
3 80 633,181 2.09 1433 908,346 2.56 23 2,171,084 5.17
4 445 539,204 1.78 22 728,336 2.06 22 1,031,770 2.46
5 443 399,802 1.32 80 609,937 1.72 1433 998,307 2.38
6 8080 375,804 1.24 8080 378,385 1.07 80 609,896 1.45
7 3389 344,989 1.14 443 367,386 1.04 8080 470,206 1.12
8 81 318,837 1.05 3389 352,536 1.00 443 384,988 0.92
9 6379 239,438 0.79 81 323,190 0.91 3389 339,200 0.81
10 5555 209,123 0.69 6379 263,730 0.74 81 319,810 0.76
11 5038 161,858 0.53 10530 211,076 0.60 6379 241,491 0.58
12 8545 151,148 0.50 33529 210,868 0.60 5555 204,819 0.49
13 1433 142,819 0.47 12111 210,775 0.60 34694 198,565 0.47
14 50802 126,700 0.42 61380 210,682 0.59 5038 166,840 0.40
15 8081 120,998 0.40 5555 206,421 0.58 8545 150,837 0.36
16 8443 110,419 0.36 16979 199,625 0.56 50802 129,653 0.31
17 11211 109,500 0.36 8545 151,147 0.43 8728 125,954 0.30
18 2323 106,157 0.35 5038 140,816 0.40 8081 123,881 0.30
19 3306 105,181 0.35 8081 123,004 0.35 8443 114,720 0.27
20 139 103,111 0.34 11211 110,200 0.31 11211 109,414 0.26

Table B.2: Top 20 DPORT Breakdown Based on Volume of UDP Traffic [Jan 2021]

Rank 146_dport 146_count % 155_dport 155_count % 196_dport 196_count %

1 5060 515110 14.35 5060 473251 12.58 53 1,155,912 20.08
2 123 217,903 6.07 123 208,960 5.55 5060 597,160 10.37
3 53 136,016 3.79 53 137,180 3.65 123 273,423 4.75
4 1900 116,912 3.26 1900 118,501 3.15 161 133,982 2.33
5 161 103,117 2.87 161 103,130 2.74 1900 116,837 2.03
6 389 77,299 2.15 389 76,867 2.04 389 90,367 1.57
7 1434 58,155 1.62 11211 62,037 1.65 1434 58,181 1.01
8 11211 53,967 1.50 1434 57,953 1.54 11211 53,644 0.93
9 5353 49,921 1.39 5353 50,248 1.34 137 51,009 0.89

10 137 48,121 1.34 137 47,873 1.27 5353 49,645 0.86
11 5683 43,720 1.22 5683 43,895 1.17 5683 44,299 0.77
12 111 39,892 1.11 111 39,622 1.05 111 40,522 0.70
13 1194 38,549 1.07 1194 38,901 1.03 1194 38,577 0.67
14 6881 36,866 1.03 6881 36,504 0.97 6881 36,799 0.64
15 3283 31,539 0.88 33434 34,709 0.92 19 34,615 0.60
16 19 31,417 0.88 3283 32,575 0.87 3283 31,544 0.55
17 6536 30,000 0.84 33435 32,382 0.86 5070 31,032 0.54
18 5070 29,536 0.82 33441 31,338 0.83 5632 28,061 0.49
19 5632 28,355 0.79 19 31,127 0.83 5351 27,366 0.48
20 5351 27,667 0.77 33440 30,823 0.82 1027 25,523 0.44
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Table B.3: Top 20 DPORT Breakdown Based on Volume of TCP Traffic [Feb 2021]

Rank 146_dport 146_count % 155_dport 155_count % 196_dport 196_count %

1 23 1,820,860 5.62 445 3,057,231 8.50 445 3,495,767 9.72
2 22 590,156 1.82 23 1,852,139 5.15 23 1,814,881 5.05
3 80 507,086 1.57 1433 779,613 2.17 37215 1,685,544 4.69
4 445 432,801 1.34 22 547,601 1.52 1433 812,691 2.26
5 8080 317,590 0.98 80 501,459 1.39 22 763,259 2.12
6 3389 312,189 0.96 8080 322,299 0.90 80 506,570 1.41
7 5555 310,462 0.96 3389 312,504 0.87 8080 401,767 1.12
8 443 292,483 0.90 443 290,860 0.81 3389 310,219 0.86
9 6379 210,472 0.65 6379 240,808 0.67 443 292,249 0.81
10 81 193,098 0.60 5555 233,314 0.65 5555 250,890 0.70
11 5038 151,179 0.47 81 193,893 0.54 6379 214,772 0.60
12 8081 124,847 0.39 8081 124,585 0.35 81 195,131 0.54
13 1433 114,567 0.35 8888 109,340 0.30 5038 154,125 0.43
14 3306 107,009 0.33 3306 106,648 0.30 8291 136,011 0.38
15 8888 106,170 0.33 11211 103,204 0.29 8728 129,896 0.36
16 11211 102,804 0.32 12111 102,325 0.28 8081 129,721 0.36
17 26 97,586 0.30 61380 101,766 0.28 8888 107,545 0.30
18 2323 92,595 0.29 10530 101,757 0.28 3306 105,943 0.29
19 8443 91,648 0.28 16979 101,755 0.28 11211 103,726 0.29
20 50802 87,537 0.27 33529 101,540 0.28 34694 101,538 0.28

Table B.4: Top 20 DPORT Breakdown Based on Volume of UDP Traffic [Feb 2021]

Rank 146_dport 146_count % 155_dport 155_count % 196_dport 196_count %

1 5060 529,974 14.85 5060 486,822 13.12 53 2,050,077 35.64
2 123 266,334 7.46 123 244,452 6.59 5060 622,502 10.82
3 53 132,695 3.72 53 132,761 3.58 123 263,103 4.57
4 1900 112,406 3.15 1900 112,048 3.02 1900 113,604 1.97
5 389 96,894 2.72 389 97,018 2.61 161 104,983 1.83
6 161 87,724 2.46 161 87,694 2.36 389 89,719 1.56
7 1434 44,578 1.25 11211 46,786 1.26 137 47,715 0.83
8 137 42,799 1.20 1434 44,413 1.20 11211 47,231 0.82
9 11211 41,000 1.15 137 42,672 1.15 1434 45,143 0.78

10 5683 40,329 1.13 54047 40,408 1.09 5683 40,049 0.70
11 5353 38,542 1.08 5683 40,311 1.09 5353 38,388 0.67
12 5070 36,187 1.01 5353 39,131 1.05 3283 37,676 0.65
13 69 35,732 1.00 5070 35,575 0.96 5070 37,388 0.65
14 111 35,288 0.99 69 35,455 0.96 69 35,224 0.61
15 3702 34,264 0.96 111 35,315 0.95 111 34,875 0.61
16 1194 33,753 0.95 1194 33,625 0.91 1194 33,474 0.58
17 19 28,094 0.79 6576 29,999 0.81 19 28,200 0.49
18 3283 27,821 0.78 19 29,108 0.78 6881 26,992 0.47
19 6881 27,564 0.77 3283 28,833 0.78 3702 26,380 0.46
20 5632 25,824 0.72 6532 28,503 0.77 5632 25,120 0.44
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Table B.5: Top 20 DPORT Breakdown Based on Volume of TCP Traffic [Mar 2021]

Rank 146_dport 146_count % 155_dport 155_count % 196_dport 196_count %

1 23 2,385,546 7.10 445 3,897,416 10.35 445 4,454,415 13.27
2 22 745,548 2.22 23 2,380,361 6.32 23 2,313,902 6.89
3 80 595,523 1.77 1433 966,434 2.57 1433 989,313 2.95
4 445 534,708 1.59 22 702,522 1.87 22 904,012 2.69
5 6379 483,091 1.44 6379 601,606 1.60 37215 696,852 2.08
6 5555 469,066 1.40 80 586,196 1.56 80 601,699 1.79
7 443 400,252 1.19 443 394,699 1.05 6379 504,017 1.50
8 3389 367,592 1.09 3389 367,050 0.98 8080 425,178 1.27
9 8080 343,352 1.02 8080 340,652 0.90 443 405,559 1.21

10 81 254,384 0.76 5555 281,651 0.75 3389 353,370 1.05
11 26 164,865 0.49 81 251,768 0.67 5555 271,174 0.81
12 1433 141,313 0.42 26 162,756 0.43 81 251,579 0.75
13 8291 140,492 0.42 8081 133,197 0.35 8291 212,772 0.63
14 8081 132,507 0.39 8443 122,669 0.33 8728 175,859 0.52
15 8443 124,734 0.37 8291 122,295 0.32 26 162,095 0.48
16 5038 120,929 0.36 5900 118,650 0.32 2375 139,709 0.42
17 5900 116,078 0.35 2323 115,354 0.31 8081 133,585 0.40
18 2323 114,257 0.34 8545 114,217 0.30 9090 124,670 0.37
19 8545 113,921 0.34 8000 106,338 0.28 8443 121,927 0.36
20 8000 103,650 0.31 9999 97,969 0.26 5038 121,446 0.36

Table B.6: Top 20 DPORT Breakdown Based on Volume of UDP Traffic [Mar 2021]

Rank 146_dport 146_count % 155_dport 155_count % 196_dport 196_count %

1 5060 626,574 16.77 5060 594,975 11.71 123 8,253,368 52.21
2 123 327,728 8.77 123 293,839 5.78 53 2,503,148 15.83
3 53 153,350 4.11 53 154,426 3.04 5060 804,339 5.09
4 389 139,354 3.73 389 142,216 2.80 389 145,954 0.92
5 1900 99,837 2.67 1900 106,217 2.09 161 144,321 0.91
6 161 91,394 2.45 161 92,053 1.81 1900 99,558 0.63
7 3702 52,340 1.40 49693 55,479 1.09 3283 94,775 0.60
8 1434 49,791 1.33 11211 49,713 0.98 137 51,816 0.33
9 137 47,094 1.26 1434 48,701 0.96 11211 50,955 0.32

10 5683 45,240 1.21 137 46,384 0.91 1434 49,460 0.31
11 5353 43,986 1.18 5683 45,734 0.90 3702 47,523 0.30
12 11211 40,485 1.08 25631 44,495 0.88 5683 45,393 0.29
13 1194 39,513 1.06 5353 44,240 0.87 5353 44,023 0.28
14 111 31,089 0.83 11551 42,696 0.84 1194 39,861 0.25
15 6881 30,695 0.82 44060 39,858 0.78 5070 31,756 0.20
16 6572 30,000 0.80 44830 39,850 0.78 111 30,818 0.19
17 19 29,255 0.78 1194 39,816 0.78 6881 30,444 0.19
18 5070 28,529 0.76 9757 39,594 0.78 19 29,257 0.19
19 3283 28,140 0.75 28447 39,440 0.78 5080 25,750 0.16
20 17 24,907 0.67 62495 39,022 0.77 5632 25,104 0.16



C
Ports and Services

This appendix contains two tables, one for TCP ports ans another for UDP ports. The
services were categorised based on these two protocols. The top 20 ports that have been
includes in each table represent ports that appeared the most in all the datasets under
study. The tables containing these ports and their proportion in each network telescope
are presented in Section 4.2.2. More explanation is found in that section with the
focus primarily on those that displayed interesting pattern or unexpected ranking in their
respective tables. In this appendix, all services are listed for all top performing ports. All
the details regarding the port services were taken from Speed Guide1 and IANA2.

1https://www.speedguide.net
2https://www.iana.org/assignments/service-names-port-numbers
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Table C.1: Top 20 TCP DPORTs and Services Run on them

Rank DPORT Service

1 23 Telnet
2 22 Secure Shell (SSH)
3 80 Hyper Text Transfer Protocol (HTTP)
4 445 Microsoft Directory Services for Active Directory (AD) and for the Server Message Block (SMB)
5 8080 Common alternative HTTP
6 3389 Microsoft Remote Desktop Protocol (RDP)
7 5555 Default for Microsoft Dynamics CRM
8 443 Hypertext Transfer Protocol Secure (HTTPS)
9 6379 Remote Dictionary Server (Redis)

10 81 Hyper Text Transfer Protocol (HTTP)
11 5038 Asterisk Manager Interface (AMI)
12 8081 Hyper Text Transfer Protocol (HTTP)
13 1433 Microsoft SQL Server
14 3306 MySQL database server connections
15 8888 NewsEDGE server
16 11211 Memory cache service
17 26 Used by Secure File Transfer Protocol (SFTP) - a simple FTP-like protocol
18 2323 3d-nfsd
19 8443 PCSync HTTPS (SSL)
20 5900 Virtual Network Computing (VNC)

Table C.2: Top 20 UDP DPORTs and Services Run on them

Rank DPORT Service

1 5060 Session Initiation Protocol (SIP)
2 123 Network Time Protocol (NTP)
3 53 Domain Name Service (DNS)
4 389 Lightweight Directory Access Protocol (LDAP)
5 1900 Simple Service Discovery Protocol (SSDP)
6 161 Simple network management protocol (SNMP)
7 3702 Web Services Discovery (WSD)
8 1434 Microsoft SQL Server
9 137 NetBIOS

11 5353 Multicast DNS (MDNS)
12 11211 Memory cache service
13 1194 OpenVPN (Virtual Private Networking)
14 111 SUN Remote Procedure Call
15 3283 Apple Remote Desktop Net Assistant reporting feature
16 6572 Unassigned
17 19 Character Generator
18 5070 VersaTrans Server Agent Service,
19 3283 Apple Remote Desktop Net Assistant reporting feature
20 69 Trivial File Transfer Protocol (TFTP)



D
Project Online Repository

This appendix details electronic resources relating to this research project. The scripts
repository contains the analysis scripts used during the data analysis and quantification.
Access to the online repository is not public and as such should be requested from the
author of this document. To contact the author to request access please send an email to
daltiso@gmail.com. The repository can be found in the link found below:

https://bitbucket.org/daltiso/phd-project/src/master/
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E
Regression Plots

This appendix contain regression analysis plots that show the relationship between the
duration of observation and the number of unique SRCIPs observed per hour. Unlike in
Section 5.4, this appendix includes regression that contained outliers which were not
account for in Section 5.4. The regression plots with outliers are found in Section
E.1. The reason for the exclusion of these plots have also been explained in that section
(Section 5.4). This appendix also contains additional plots that were not included in
the same section (Section 5.4) to help the reader have a better understanding from all
network telescopes. The additional plots without outliers can be found in Section E.2.
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E.1. REGRESSION PLOTS WITH OUTLIERS 233

E.1 Regression Plots With Outliers

(a) January - March (b) January

Figure E.1: 146/8: Number of Unique SRCIP observed/hour [with outliers]

(a) January - March (b) January

Figure E.2: 196-A/8: Number of Unique SRCIP observed/hour [with outliers]
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(a) January - March (b) January

Figure E.3: 155/8: Number of Unique SRCIP observed/hour [with outliers]

E.2 Regression Plots Without Outliers

(a) February (b) March

Figure E.4: 146/8 -[Feb - Mar]: Number of Unique SRCIP observed/hour



E.2. REGRESSION PLOTS WITHOUT OUTLIERS 235

(a) February (b) March

Figure E.5: 196-A/8 -[Feb - Mar]: Number of Unique SRCIP observed/hour

(a) February (b) March

Figure E.6: 155/8 -[Feb - Mar]: Number of Unique SRCIP observed/hour



F
CI findings for January

This appendix contain additional confidence interval findings that were not included in
Section 5.5. In Section 5.5, the findings that were included were those of 146/8 and
155/8 network telescopes . However in this appendix, the 196-A/8 network telescopes
CI findings that were not included in Section 5.5 can be found. Note that the findings
that were not included in the main body were those of the month of January only.
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Table F.1: 196-A/8-012021: CI for No. of Unique SRCIP/hour [Non-Parametric]

CI Level
Bootstrap sample 80% 90% 95% 99%
196-A/8 - /e24 [793 - 806] [791 - 807] [790 - 809] [787 - 812]

196/8 - /e25 [399 - 406] [398 - 406] [397 - 407] [396 - 409]
196/8 - /e26 [199 - 202] [199 - 203] 198 - 203] [198 - 204]
196/8 - /e27 [99 - 101] [99 - 101] [98 - 101] [98 - 102]

Table F.2: 196-A/8-012021: CI for No. of Unique SRCIP/hour [Parametric]

CI Level
Bootstrap sample 80% 90% 95% 99%

196/8 - /e24 [931 - 951] [927 - 954] [924 - 957] [920 - 961]
196/8 - /e25 [468 - 479] [467 - 481] [466 - 482] [462 - 486]
196/8 - /e26 [234 - 240] [233 - 241] [233 - 241] [232 - 243]
196/8 - /e27 [116 - 120] [116 - 120] [115 - 121] 115 - 121]

Table F.3: Summary statistics for 196-A/8-012021 [Non-Parametric]

Bootstrap Sample Baseline Mean Bootstrap Mean Baseline SEM Bootstrap SEM
196/8 - /e24 799 800 4.843 4.84
196/8 - /e25 403 402 2.52 2.52
196/8 - /e26 201 201 1.32 1.32
196/8 - /e27 100 100 0.70 0.70



G
Plots for CI

This appendix contains additional findings of confidence interval plots. These plots are
graphical representation of the bootstrap samples. Similar results in the main body can
be found in Section 5.6 where their interpretation is given.
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(a) Non - Parametric Bootstrap Sample (b) Parametric Bootstrap Sample

Figure G.1: 146/8-012021: /24 Subnet equivalent Bootstrap Sample at 95% CI

(a) Non - Parametric Bootstrap Sample (b) Parametric Bootstrap Sample

Figure G.2: 146/8-022021: /e25 Subnet equivalent Bootstrap Sample at 95% CI
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(a) Non - Parametric Bootstrap Sample (b) Parametric Bootstrap Sample

Figure G.3: 155/8-0220211: /e26 Subnet equivalent Bootstrap Sample at 95% CI

(a) Non - Parametric Bootstrap Sample (b) Parametric Bootstrap Sample

Figure G.4: 155/8-022021: /e27 Subnet equivalent Bootstrap Sample at 95% CI
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(a) Non - Parametric Bootstrap Sample (b) Parametric Bootstrap Sample

Figure G.5: 196-A/8-032021: /e26 Subnet equivalent Bootstrap Sample at 95% CI

(a) Non - Parametric Bootstrap Sample (b) Parametric Bootstrap Sample

Figure G.6: 196-A/8-022021: /e27 Subnet equivalent Bootstrap Sample at 95% CI



H
Raw Data Summary of Unique

SRCIP/Day

This appendix contains additional box-plots that summarise the distribution of unique
SRCIPs in each data sample using the box and whisker plots. This is for both random
and sequential sampling. The box plots that have been added in the main body and their
interpretation can be found in Section 4.3
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(a) Random Samples (b) Sequential Samples

Figure H.1: 146/8: Data Summary of No. Unique SRCIP/Day

(a) Random Samples (b) Sequential Samples

Figure H.2: 196-A/8: Data Summary of No. Unique SRCIP/Day
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(a) Random Samples (b) Sequential Samples

Figure H.3: 155/8 - [Jan - Mar]: Data Summary of Unique SRCIP/Day



I
Sequential Sampling Subnet Hierarchy

This appendix contains a table that shows sequential sampling subnet hierarchy that was
used in this research study. The left column indicates how many DSTIP each subnet is
expected to have while the right hand column shows how many subnets each level of level
has. The work related to this table is explained in Section 4.1.2.
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IP Count Subnet Hierarchy (Sequential Sampling Net-mask)

256 /24

128 /25 /25

64 /26 /26 /26 /26

32 /27 /27 /27 /27 /27 /27 /27 /27

16 /27 /27 /27 /27 /27 /27 /27 /27 /27 /27 /27 /27 /27 /27 /27 /27

8 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28 /28

4 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 −−→

/29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29 /29

2 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 −−→

/30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 −−→

/30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 −−→

/30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30 /30

Figure I.1: Sequential Sampling Subnet Hierarchy
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