31 research outputs found

    Doodle to Search: Practical Zero-Shot Sketch-based Image Retrieval

    Get PDF
    In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future researchComment: Oral paper in CVPR 201

    Why do These Match? Explaining the Behavior of Image Similarity Models

    Full text link
    Explaining a deep learning model can help users understand its behavior and allow researchers to discern its shortcomings. Recent work has primarily focused on explaining models for tasks like image classification or visual question answering. In this paper, we introduce Salient Attributes for Network Explanation (SANE) to explain image similarity models, where a model's output is a score measuring the similarity of two inputs rather than a classification score. In this task, an explanation depends on both of the input images, so standard methods do not apply. Our SANE explanations pairs a saliency map identifying important image regions with an attribute that best explains the match. We find that our explanations provide additional information not typically captured by saliency maps alone, and can also improve performance on the classic task of attribute recognition. Our approach's ability to generalize is demonstrated on two datasets from diverse domains, Polyvore Outfits and Animals with Attributes 2. Code available at: https://github.com/VisionLearningGroup/SANEComment: Accepted at ECCV 202

    Progressive Domain-Independent Feature Decomposition Network for Zero-Shot Sketch-Based Image Retrieval

    Full text link
    Zero-shot sketch-based image retrieval (ZS-SBIR) is a specific cross-modal retrieval task for searching natural images given free-hand sketches under the zero-shot scenario. Most existing methods solve this problem by simultaneously projecting visual features and semantic supervision into a low-dimensional common space for efficient retrieval. However, such low-dimensional projection destroys the completeness of semantic knowledge in original semantic space, so that it is unable to transfer useful knowledge well when learning semantic from different modalities. Moreover, the domain information and semantic information are entangled in visual features, which is not conducive for cross-modal matching since it will hinder the reduction of domain gap between sketch and image. In this paper, we propose a Progressive Domain-independent Feature Decomposition (PDFD) network for ZS-SBIR. Specifically, with the supervision of original semantic knowledge, PDFD decomposes visual features into domain features and semantic ones, and then the semantic features are projected into common space as retrieval features for ZS-SBIR. The progressive projection strategy maintains strong semantic supervision. Besides, to guarantee the retrieval features to capture clean and complete semantic information, the cross-reconstruction loss is introduced to encourage that any combinations of retrieval features and domain features can reconstruct the visual features. Extensive experiments demonstrate the superiority of our PDFD over state-of-the-art competitors
    corecore