7,865 research outputs found

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    A Fair and Efficient Packet Scheduling Scheme for IEEE 802.16 Broadband Wireless Access Systems

    Full text link
    This paper proposes a fair and efficient QoS scheduling scheme for IEEE 802.16 BWA systems that satisfies both throughput and delay guarantee to various real and non-real time applications. The proposed QoS scheduling scheme is compared with an existing QoS scheduling scheme proposed in literature in recent past. Simulation results show that the proposed scheduling scheme can provide a tight QoS guarantee in terms of delay, delay violation rate and throughput for all types of traffic as defined in the WiMAX standard, thereby maintaining the fairness and helps to eliminate starvation of lower priority class services. Bandwidth utilization of the system and fairness index of the resources are also encountered to validate the QoS provided by our proposed scheduling scheme

    Mobility: a double-edged sword for HSPA networks

    Get PDF
    This paper presents an empirical study on the performance of mobile High Speed Packet Access (HSPA, a 3.5G cellular standard) networks in Hong Kong via extensive field tests. Our study, from the viewpoint of end users, covers virtually all possible mobile scenarios in urban areas, including subways, trains, off-shore ferries and city buses. We have confirmed that mobility has largely negative impacts on the performance of HSPA networks, as fast-changing wireless environment causes serious service deterioration or even interruption. Meanwhile our field experiment results have shown unexpected new findings and thereby exposed new features of the mobile HSPA networks, which contradict commonly held views. We surprisingly find out that mobility can improve fairness of bandwidth sharing among users and traffic flows. Also the triggering and final results of handoffs in mobile HSPA networks are unpredictable and often inappropriate, thus calling for fast reacting fallover mechanisms. We have conducted in-depth research to furnish detailed analysis and explanations to what we have observed. We conclude that mobility is a double-edged sword for HSPA networks. To the best of our knowledge, this is the first public report on a large scale empirical study on the performance of commercial mobile HSPA networks
    corecore