4 research outputs found

    StarMX: A Framework for Developing Self-Managing Software Systems

    Get PDF
    The scale of computing systems has extensively grown over the past few decades in order to satisfy emerging business requirements. As a result of this evolution, the complexity of these systems has increased significantly, which has led to many difficulties in managing and administering them. The solution to this problem is to build systems that are capable of managing themselves, given high-level objectives. This vision is also known as Autonomic Computing. A self-managing system is governed by a closed control loop, which is responsible for dynamically monitoring the underlying system, analyzing the observed situation, planning the recovering actions, and executing the plan to maintain the system equilibrium. The realization of such systems poses several developmental and operational challenges, including: developing their architecture, constructing the control loop, and creating services that enable dynamic adaptation behavior. Software frameworks are effective in addressing these challenges: they can simplify the development of such systems by reducing design and implementation efforts, and they provide runtime services for supporting self-managing behavior. This dissertation presents a novel software framework, called StarMX, for developing adaptive and self-managing Java-based systems. It is a generic configurable framework based on standards and well-established principles, and provides the required features and facilities for the development of such systems. It extensively supports Java Management Extensions (JMX) and is capable of integrating with different policy engines. This allows the developer to incorporate and use these techniques in the design of a control loop in a flexible manner. The control loop is created as a chain of entities, called processes, such that each process represents one or more functions of the loop (monitoring, analyzing, planning, and executing). A process is implemented by either a policy language or the Java language. At runtime, the framework invokes the chain of processes in the control loop, providing each one with the required set of objects for monitoring and effecting. An open source Java-based Voice over IP system, called CC2, is selected as the case study used in a set of experiments that aim to capture a solid understanding of the framework suitability for developing adaptive systems and to improve its feature set. The experiments are also used to evaluate the performance overhead incurred by the framework at runtime. The performance analysis results show the execution time spent in different components, including the framework itself, the policy engine, and the sensors/effectors. The results also reveal that the time spent in the framework is negligible, and it has no considerable impact on the system's overall performance

    Evaluating Mission-Critical Self-Adaptive Software Systems: A Testing-Based Approach

    Get PDF
    Self-adaptive software is a closed-loop system that tries to manage, direct, or regulate its own behavior dynamically. Such a system aims at providing an automated and systematic approach to handling the increasing complexity of operation management. Mission-critical systems (e.g., e-business and telecommunication systems) are usually large, complex, and distributed. These systems must preserve their Quality of Service (QoS) at runtime under highly dynamic and non-deterministic conditions; therefore, they are suitable candidates for being equipped with self-adaptive capabilities. Although significant efforts have been devoted to modeling, designing, developing and deploying self-adaptive software since a decade ago, there is still a lack of well-established concrete processes for evaluating such systems. This dissertation proposes a systematic evaluation process for mission-critical self-adaptive software systems. The process is a well-defined testing approach that needs a post-mortem analysis, takes the quantified QoS requirements as inputs, and comprises two main phases: i) conducting system-level testing, and ii) evaluating QoS requirements satisfaction. The process uses Service Level Agreements (SLAs) as quantified QoS requirements, and consequently as the adaptation requirements of mission-critical systems. Adaptation requirements are specific types of requirements used to engineer self-adaptive software. Moreover, for the first phase, the dissertation discusses the uniqueness and necessity of conducting system-level load and stress testing on a self-adaptive software system, for collecting runtime QoS data. In the second phase, the process makes use of utility functions to generate a single value indicating the QoS satisfaction of the evaluated system. The dissertation mainly focuses on evaluating the performance, availability and reliability characteristics of QoS. An open source service-oriented Voice over IP (VoIP) application was selected as a case study. The VoIP application was transformed into a self-adaptive software system with various types of adaptation mechanisms. A set of empirical experiments was performed on the developed self-adaptive VoIP application, and the proposed process was adopted for evaluating the effectiveness of different adaptation mechanisms. To this end, the dissertation defines a sample SLA for the VoIP application, presents a report on the load and stress testing performed on the self-adaptive VoIP application, and presents a set of utility functions for evaluation. The experiments illustrate the validity, reliability, flexibility, and cost of the proposed evaluation process. In sum, this dissertation introduces a novel evaluation process for mission-critical self-adaptive software systems, and shows that the proposed process can help researchers to systematically evaluate their self-adaptive systems

    A Quality-Driven Approach to Enable Decision-Making in Self-Adaptive Software

    Get PDF
    Self-adaptive software systems are increasingly in demand. The driving forces are changes in the software “self” and “context”, particularly in distributed and pervasive applications. These systems provide self-* properties in order to keep requirements satisfied in different situations. Engineering self-adaptive software normally involves building the adaptable software and the adaptation manager. This PhD thesis focuses on the latter, especially on the design and implementation of the deciding process in an adaptation manager. For this purpose, a Quality-driven Framework for Engineering an Adaptation Manager (QFeam) is proposed, in which quality requirements play a key role as adaptation goals. Two major phases of QFeam are building the runtime adaptation model and designing the adaptation mechanism. The modeling phase investigates eliciting and specifying key entities of the adaptation problem space including goals, attributes, and actions. Three composition patterns are discussed to link these entities to build the adaptation model, namely: goal-centric, attribute-action-coupling, and hybrid patterns. In the second phase, the adaptation mechanism is designed according to the adopted pattern in the model. Therefore, three categories of mechanisms are discussed, in which the novel goal-ensemble mechanism is introduced. A concrete model and mechanism, the Goal-Attribute-Action Model (GAAM), is proposed based on the goal-centric pattern and the goal-ensemble mechanism. GAAM is implemented based on the StarMX framework for Java-based systems. Several considerations are taken into account in QFeam: i) the separation of adaptation knowledge from application knowledge, ii) highlighting the role of adaptation goals, and iii) modularity and reusability. Among these, emphasizing goals is the tenet of QFeam, especially in order to address the challenge of addressing several self- * properties in the adaptation manager. Furthermore, QFeam aims at embedding a model in the adaptation manager, particularly in the goal-centric and hybrid patterns. The proposed framework focuses on mission-critical systems including enterprise and service-oriented applications. Several empirical studies were conducted to put QFeam into practice, and also evaluate GAAM in comparison with other adaptation models and mechanisms. Three case studies were selected for this purpose: the TPC-W bookstore application, a news application, and the CC2 VoIP call controller. Several research questions were set for each case study, and findings indicate that the goal-ensemble mechanism and GAAM can outperform or work as well as a common rule-based approach. The notable difference is that the effort of building an adaptation manager based on a goal-centric pattern is less than building it using an attribute-action-coupling pattern. Moreover, representing goals explicitly leads to better scalability and understandability of the adaptation manager. Overall, the experience of working on these three systems show that QFeam improves the design and development process of the adaptation manager, particularly by highlighting the role of adaptation goals

    Evolving Software Systems for Self-Adaptation

    Get PDF
    There is a strong synergy between the concepts of evolution and adaptation in software engineering: software adaptation refers to both the current software being adapted and to the evolution process that leads to the new adapted software. Evolution changes for the purpose of adaptation are usually made at development or compile time, and are meant to handle predictable situations in the form of software change requests. On the other hand, software may also change and adapt itself based on the changes in its environment. Such adaptive changes are usually dynamic, and are suitable for dealing with unpredictable or temporary changes in the software's operating environment. A promising solution for software adaptation is to develop self-adaptive software systems that can manage changes dynamically at runtime in a rapid and reliable way. One of the main advantages of self-adaptive software is its ability to manage the complexity that stems from highly dynamic and nondeterministic operating environments. If a self-adaptive software system has been engineered and used properly, it can greatly improve the cost-effectiveness of software change through its lifespan. However, in practice, many of the existing approaches towards self-adaptive software are rather expensive and may increase the overall system complexity, as well as subsequent future maintenance costs. This means that in many cases, self-adaptive software is not a good solution, because its development and maintenance costs are not paid off. The situation is even worse in the case of making current (legacy) systems adaptive. There are several factors that have an impact on the cost-effectiveness and usability of self-adaptive software; however the main objective of this thesis is to make a software system adaptive in a cost-effective way, while keeping the target adaptive software generic, usable, and evolvable, so as to support future changes. In order to effectively engineer and use self-adaptive software systems, in this thesis we propose a new conceptual model for identifying and specifying problem spaces in the context of self-adaptive software systems. Based on the foundations of this conceptual model, we propose a model-centric approach for engineering self-adaptive software by designing a generic adaptation framework and a supporting evolution process. This approach is particularly tailored to facilitate and simplify the process of evolving and adapting current (legacy) software towards runtime adaptivity. The conducted case studies reveal the applicability and effectiveness of this approach in bringing self-adaptive behaviour into non-adaptive applications that essentially demand adaptive behaviour to sustain
    corecore