18 research outputs found

    A weighted reduced basis method for elliptic partial differential equations with random input data

    Get PDF
    In this work we propose and analyze a weighted reduced basis method to solve elliptic partial differential equations (PDEs) with random input data. The PDEs are first transformed into a weighted parametric elliptic problem depending on a finite number of parameters. Distinctive importance of the solution at different values of the parameters is taken into account by assigning different weights to the samples in the greedy sampling procedure. A priori convergence analysis is carried out by constructive approximation of the exact solution with respect to the weighted parameters. Numerical examples are provided for the assessment of the advantages of the proposed method over the reduced basis method and the stochastic collocation method in both univariate and multivariate stochastic problems. \ua9 2013 Society for Industrial and Applied Mathematics

    A robust error estimator and a residual-free error indicator for reduced basis methods

    Full text link
    The Reduced Basis Method (RBM) is a rigorous model reduction approach for solving parametrized partial differential equations. It identifies a low-dimensional subspace for approximation of the parametric solution manifold that is embedded in high-dimensional space. A reduced order model is subsequently constructed in this subspace. RBM relies on residual-based error indicators or {\em a posteriori} error bounds to guide construction of the reduced solution subspace, to serve as a stopping criteria, and to certify the resulting surrogate solutions. Unfortunately, it is well-known that the standard algorithm for residual norm computation suffers from premature stagnation at the level of the square root of machine precision. In this paper, we develop two alternatives to the standard offline phase of reduced basis algorithms. First, we design a robust strategy for computation of residual error indicators that allows RBM algorithms to enrich the solution subspace with accuracy beyond root machine precision. Secondly, we propose a new error indicator based on the Lebesgue function in interpolation theory. This error indicator does not require computation of residual norms, and instead only requires the ability to compute the RBM solution. This residual-free indicator is rigorous in that it bounds the error committed by the RBM approximation, but up to an uncomputable multiplicative constant. Because of this, the residual-free indicator is effective in choosing snapshots during the offline RBM phase, but cannot currently be used to certify error that the approximation commits. However, it circumvents the need for \textit{a posteriori} analysis of numerical methods, and therefore can be effective on problems where such a rigorous estimate is hard to derive

    Local equilibration error estimators for guaranteed error control in adaptive stochastic higher-order Galerkin FEM

    Get PDF
    Equilibration error estimators have been shown to commonly lead to very accurate guaranteed error bounds in the a posteriori error control of finite element methods for second order elliptic equations. Here, we extend previous results by the design of equilibrated fluxes for higher-order finite element methods with nonconstant coefficients and illustrate the favourable performance of different variants of the error estimator within two deterministic benchmark settings. After the introduction of the respective parametric problem with stochastic coefficients and the stochastic Galerkin FEM discretisation, a novel a posteriori error estimator for the stochastic error in the energy norm is devised. The error estimation is based on the stochastic residual and its decomposition into approximation residuals and a truncation error of the stochastic discretisation. Importantly, by using the derived deterministic equilibration techniques for the approximation residuals, the computable error bound is guaranteed for the considered class of problems. An adaptive algorithm allows the simultaneous refinement of the deterministic mesh and the stochastic discretisation in anisotropic Legendre polynomial chaos. Several stochastic benchmark problems illustrate the efficiency of the adaptive process
    corecore