2,614 research outputs found

    Does Confidence Reporting from the Crowd Benefit Crowdsourcing Performance?

    Full text link
    We explore the design of an effective crowdsourcing system for an MM-ary classification task. Crowd workers complete simple binary microtasks whose results are aggregated to give the final classification decision. We consider the scenario where the workers have a reject option so that they are allowed to skip microtasks when they are unable to or choose not to respond to binary microtasks. Additionally, the workers report quantized confidence levels when they are able to submit definitive answers. We present an aggregation approach using a weighted majority voting rule, where each worker's response is assigned an optimized weight to maximize crowd's classification performance. We obtain a couterintuitive result that the classification performance does not benefit from workers reporting quantized confidence. Therefore, the crowdsourcing system designer should employ the reject option without requiring confidence reporting.Comment: 6 pages, 4 figures, SocialSens 2017. arXiv admin note: text overlap with arXiv:1602.0057

    Optimal Crowdsourced Classification with a Reject Option in the Presence of Spammers

    Full text link
    We explore the design of an effective crowdsourcing system for an MM-ary classification task. Crowd workers complete simple binary microtasks whose results are aggregated to give the final decision. We consider the scenario where the workers have a reject option so that they are allowed to skip microtasks when they are unable to or choose not to respond to binary microtasks. We present an aggregation approach using a weighted majority voting rule, where each worker's response is assigned an optimized weight to maximize crowd's classification performance.Comment: submitted to ICASSP 201

    Gradient descent for sparse rank-one matrix completion for crowd-sourced aggregation of sparsely interacting workers

    Full text link
    We consider worker skill estimation for the singlecoin Dawid-Skene crowdsourcing model. In practice skill-estimation is challenging because worker assignments are sparse and irregular due to the arbitrary, and uncontrolled availability of workers. We formulate skill estimation as a rank-one correlation-matrix completion problem, where the observed components correspond to observed label correlation between workers. We show that the correlation matrix can be successfully recovered and skills identifiable if and only if the sampling matrix (observed components) is irreducible and aperiodic. We then propose an efficient gradient descent scheme and show that skill estimates converges to the desired global optima for such sampling matrices. Our proof is original and the results are surprising in light of the fact that even the weighted rank-one matrix factorization problem is NP hard in general. Next we derive sample complexity bounds for the noisy case in terms of spectral properties of the signless Laplacian of the sampling matrix. Our proposed scheme achieves state-of-art performance on a number of real-world datasets.Published versio

    Time-Sensitive Bayesian Information Aggregation for Crowdsourcing Systems

    Get PDF
    Crowdsourcing systems commonly face the problem of aggregating multiple judgments provided by potentially unreliable workers. In addition, several aspects of the design of efficient crowdsourcing processes, such as defining worker's bonuses, fair prices and time limits of the tasks, involve knowledge of the likely duration of the task at hand. Bringing this together, in this work we introduce a new time--sensitive Bayesian aggregation method that simultaneously estimates a task's duration and obtains reliable aggregations of crowdsourced judgments. Our method, called BCCTime, builds on the key insight that the time taken by a worker to perform a task is an important indicator of the likely quality of the produced judgment. To capture this, BCCTime uses latent variables to represent the uncertainty about the workers' completion time, the tasks' duration and the workers' accuracy. To relate the quality of a judgment to the time a worker spends on a task, our model assumes that each task is completed within a latent time window within which all workers with a propensity to genuinely attempt the labelling task (i.e., no spammers) are expected to submit their judgments. In contrast, workers with a lower propensity to valid labeling, such as spammers, bots or lazy labelers, are assumed to perform tasks considerably faster or slower than the time required by normal workers. Specifically, we use efficient message-passing Bayesian inference to learn approximate posterior probabilities of (i) the confusion matrix of each worker, (ii) the propensity to valid labeling of each worker, (iii) the unbiased duration of each task and (iv) the true label of each task. Using two real-world public datasets for entity linking tasks, we show that BCCTime produces up to 11% more accurate classifications and up to 100% more informative estimates of a task's duration compared to state-of-the-art methods

    Cheaper and Better: Selecting Good Workers for Crowdsourcing

    Full text link
    Crowdsourcing provides a popular paradigm for data collection at scale. We study the problem of selecting subsets of workers from a given worker pool to maximize the accuracy under a budget constraint. One natural question is whether we should hire as many workers as the budget allows, or restrict on a small number of top-quality workers. By theoretically analyzing the error rate of a typical setting in crowdsourcing, we frame the worker selection problem into a combinatorial optimization problem and propose an algorithm to solve it efficiently. Empirical results on both simulated and real-world datasets show that our algorithm is able to select a small number of high-quality workers, and performs as good as, sometimes even better than, the much larger crowds as the budget allows
    • …
    corecore