3,817 research outputs found

    Learning Relatedness Measures for Entity Linking

    Get PDF
    Entity Linking is the task of detecting, in text documents, relevant mentions to entities of a given knowledge base. To this end, entity-linking algorithms use several signals and features extracted from the input text or from the knowl- edge base. The most important of such features is entity relatedness. Indeed, we argue that these algorithms benefit from maximizing the relatedness among the relevant enti- ties selected for annotation, since this minimizes errors in disambiguating entity-linking. The definition of an e↵ective relatedness function is thus a crucial point in any entity-linking algorithm. In this paper we address the problem of learning high-quality entity relatedness functions. First, we formalize the problem of learning entity relatedness as a learning-to-rank problem. We propose a methodology to create reference datasets on the basis of manually annotated data. Finally, we show that our machine-learned entity relatedness function performs better than other relatedness functions previously proposed, and, more importantly, improves the overall performance of dif- ferent state-of-the-art entity-linking algorithms

    Word Embeddings for Entity-annotated Texts

    Full text link
    Learned vector representations of words are useful tools for many information retrieval and natural language processing tasks due to their ability to capture lexical semantics. However, while many such tasks involve or even rely on named entities as central components, popular word embedding models have so far failed to include entities as first-class citizens. While it seems intuitive that annotating named entities in the training corpus should result in more intelligent word features for downstream tasks, performance issues arise when popular embedding approaches are naively applied to entity annotated corpora. Not only are the resulting entity embeddings less useful than expected, but one also finds that the performance of the non-entity word embeddings degrades in comparison to those trained on the raw, unannotated corpus. In this paper, we investigate approaches to jointly train word and entity embeddings on a large corpus with automatically annotated and linked entities. We discuss two distinct approaches to the generation of such embeddings, namely the training of state-of-the-art embeddings on raw-text and annotated versions of the corpus, as well as node embeddings of a co-occurrence graph representation of the annotated corpus. We compare the performance of annotated embeddings and classical word embeddings on a variety of word similarity, analogy, and clustering evaluation tasks, and investigate their performance in entity-specific tasks. Our findings show that it takes more than training popular word embedding models on an annotated corpus to create entity embeddings with acceptable performance on common test cases. Based on these results, we discuss how and when node embeddings of the co-occurrence graph representation of the text can restore the performance.Comment: This paper is accepted in 41st European Conference on Information Retrieva

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field

    EntiTables: Smart Assistance for Entity-Focused Tables

    Full text link
    Tables are among the most powerful and practical tools for organizing and working with data. Our motivation is to equip spreadsheet programs with smart assistance capabilities. We concentrate on one particular family of tables, namely, tables with an entity focus. We introduce and focus on two specific tasks: populating rows with additional instances (entities) and populating columns with new headings. We develop generative probabilistic models for both tasks. For estimating the components of these models, we consider a knowledge base as well as a large table corpus. Our experimental evaluation simulates the various stages of the user entering content into an actual table. A detailed analysis of the results shows that the models' components are complimentary and that our methods outperform existing approaches from the literature.Comment: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '17), 201
    • …
    corecore