175 research outputs found

    Supporting real time video over ATM networks

    Get PDF
    Includes bibliographical references.In this project, we propose and evaluate an approach to delimit and tag such independent video slice at the ATM layer for early discard. This involves the use of a tag cell differentiated from the rest of the data by its PTI value and a modified tag switch to facilitate the selective discarding of affected cells within each video slice as opposed to dropping of cells at random from multiple video frames

    Traffic Management and Congestion Control in the ATM Network Model.

    Get PDF
    Asynchronous Transfer Mode (ATM) networking technology has been chosen by the International Telegraph and Telephony Consultative Committee (CCITT) for use on future local as well as wide area networks to handle traffic types of a wide range. It is a cell based network architecture that resembles circuit switched networks, providing Quality of Service (QoS) guarantees not normally found on data networks. Although the specifications for the architecture have been continuously evolving, traffic congestion management techniques for ATM networks have not been very well defined yet. This thesis studies the traffic management problem in detail, provides some theoretical understanding and presents a collection of techniques to handle the problem under various operating conditions. A detailed simulation of various ATM traffic types is carried out and the collected data is analyzed to gain an insight into congestion formation patterns. Problems that may arise during migration planning from legacy LANs to ATM technology are also considered. We present an algorithm to identify certain portions of the network that should be upgraded to ATM first. The concept of adaptive burn-in is introduced to help ease the computational costs involved in virtual circuit setup and tear down operations

    Dynamic bandwidth allocation in ATM networks

    Get PDF
    Includes bibliographical references.This thesis investigates bandwidth allocation methodologies to transport new emerging bursty traffic types in ATM networks. However, existing ATM traffic management solutions are not readily able to handle the inevitable problem of congestion as result of the bursty traffic from the new emerging services. This research basically addresses bandwidth allocation issues for bursty traffic by proposing and exploring the concept of dynamic bandwidth allocation and comparing it to the traditional static bandwidth allocation schemes

    ATOM : a distributed system for video retrieval via ATM networks

    Get PDF
    The convergence of high speed networks, powerful personal computer processors and improved storage technology has led to the development of video-on-demand services to the desktop that provide interactive controls and deliver Client-selected video information on a Client-specified schedule. This dissertation presents the design of a video-on-demand system for Asynchronous Transfer Mode (ATM) networks, incorporating an optimised topology for the nodes in the system and an architecture for Quality of Service (QoS). The system is called ATOM which stands for Asynchronous Transfer Mode Objects. Real-time video playback over a network consumes large bandwidth and requires strict bounds on delay and error in order to satisfy the visual and auditory needs of the user. Streamed video is a fundamentally different type of traffic to conventional IP (Internet Protocol) data since files are viewed in real-time, not downloaded and then viewed. This streaming data must arrive at the Client decoder when needed or it loses its interactive value. Characteristics of multimedia data are investigated including the use of compression to reduce the excessive bit rates and storage requirements of digital video. The suitability of MPEG-1 for video-on-demand is presented. Having considered the bandwidth, delay and error requirements of real-time video, the next step in designing the system is to evaluate current models of video-on-demand. The distributed nature of four such models is considered, focusing on how Clients discover Servers and locate videos. This evaluation eliminates a centralized approach in which Servers have no logical or physical connection to any other Servers in the network and also introduces the concept of a selection strategy to find alternative Servers when Servers are fully loaded. During this investigation, it becomes clear that another entity (called a Broker) could provide a central repository for Server information. Clients have logical access to all videos on every Server simply by connecting to a Broker. The ATOM Model for distributed video-on-demand is then presented by way of a diagram of the topology showing the interconnection of Servers, Brokers and Clients; a description of each node in the system; a list of the connectivity rules; a description of the protocol; a description of the Server selection strategy and the protocol if a Broker fails. A sample network is provided with an example of video selection and design issues are raised and solved including how nodes discover each other, a justification for using a mesh topology for the Broker connections, how Connection Admission Control (CAC) is achieved, how customer billing is achieved and how information security is maintained. A calculation of the number of Servers and Brokers required to service a particular number of Clients is presented. The advantages of ATOM are described. The underlying distributed connectivity is abstracted away from the Client. Redundant Server/Broker connections are eliminated and the total number of connections in the system are minimized by the rule stating that Clients and Servers may only connect to one Broker at a time. This reduces the total number of Switched Virtual Circuits (SVCs) which are a performance hindrance in ATM. ATOM can be easily scaled by adding more Servers which increases the total system capacity in terms of storage and bandwidth. In order to transport video satisfactorily, a guaranteed end-to-end Quality of Service architecture must be in place. The design methodology for such an architecture is investigated starting with a review of current QoS architectures in the literature which highlights important definitions including a flow, a service contract and flow management. A flow is a single media source which traverses resource modules between Server and Client. The concept of a flow is important because it enables the identification of the areas requiring consideration when designing a QoS architecture. It is shown that ATOM adheres to the principles motivating the design of a QoS architecture, namely the Integration, Separation and Transparency principles. The issue of mapping human requirements to network QoS parameters is investigated and the action of a QoS framework is introduced, including several possible causes of QoS degradation. The design of the ATOM Quality of Service Architecture (AQOSA) is then presented. AQOSA consists of 11 modules which interact to provide end-to-end QoS guarantees for each stream. Several important results arise from the design. It is shown that intelligent choice of stored videos in respect of peak bandwidth can improve overall system capacity. The concept of disk striping over a disk array is introduced and a Data Placement Strategy is designed which eliminates disk hot spots (i.e. Overuse of some disks whilst others lie idle.) A novel parameter (the B-P Ratio) is presented which can be used by the Server to predict future bursts from each video stream. The use of Traffic Shaping to decrease the load on the network from each stream is presented. Having investigated four algorithms for rewind and fast-forward in the literature, a rewind and fast-forward algorithm is presented. The method produces a significant decrease in bandwidth, and the resultant stream is very constant, reducing the chance that the stream will add to network congestion. The C++ classes of the Server, Broker and Client are described emphasizing the interaction between classes. The use of ATOM in the Virtual Private Network and the multimedia teaching laboratory is considered. Conclusions and recommendations for future work are presented. It is concluded that digital video applications require high bandwidth, low error, low delay networks; a video-on-demand system to support large Client volumes must be distributed, not centralized; control and operation (transport) must be separated; the number of ATM Switched Virtual Circuits (SVCs) must be minimized; the increased connections caused by the Broker mesh is justified by the distributed information gain; a Quality of Service solution must address end-to-end issues. It is recommended that a web front-end for Brokers be developed; the system be tested in a wide area A TM network; the Broker protocol be tested by forcing failure of a Broker and that a proprietary file format for disk striping be implemented

    An intelligent approach to quality of service for MPEG-4 video transmission in IEEE 802.15.1

    Get PDF
    Nowadays, wireless connectivity is becoming ubiquitous spreading to companies and in domestic areas. IEEE 802.15.1 commonly known as Bluetooth is high-quality, high-security, high-speed and low-cost radio signal technology. This wireless technology allows a maximum access range of 100 meters yet needs power as low as 1mW. Regrettably, IEEE 802.15.1 has a very limited bandwidth. This limitation can become a real problem If the user wishes to transmit a large amount of data in a very short time. The version 1.2 which is used in this project could only carry a maximum download rate of 724Kbps and an upload rate of 54Kbps In its asynchronous mode. But video needs a very large bandwidth to be transmitted with a sufficient level of quality. Video transmission over IEEE 802.15.1 networks would therefore be difficult to achieve, due to the limited bandwidth. Hence, a solution to transmit digital video with a sufficient quality of picture to arrive at the receiving end is required. A hybrid scheme has been developed in this thesis, comprises of a fuzzy logic set of rules and an artificial neural network algorithms. MPEG-4 video compression has been used in this work to optimise the transmission. This research further utilises an ‘added-buffer’ to prevent excessive data loss of MPEG-4 video over IEEE 802.15.1transmission and subsequently increase picture quality. The neural-fuzzy scheme regulates the output rate of the added-buffer to ensure that MPEG-4 video stream conforms to the traffic conditions of the IEEE 802.15.1 channel during the transmission period, that is to send more data when the bandwidth is not fully used and keep the data in the buffers if the bandwidth is overused. Computer simulation results confirm that intelligence techniques and added-buffer do improve quality of picture, reduce data loss and communication delay, as compared with conventional MPEG video transmission over IEEE 802.15.1

    Designing new network adaptation and ATM adaptation layers for interactive multimedia applications

    Get PDF
    Multimedia services, audiovisual applications composed of a combination of discrete and continuous data streams, will be a major part of the traffic flowing in the next generation of high speed networks. The cornerstones for multimedia are Asynchronous Transfer Mode (ATM) foreseen as the technology for the future Broadband Integrated Services Digital Network (B-ISDN) and audio and video compression algorithms such as MPEG-2 that reduce applications bandwidth requirements. Powerful desktop computers available today can integrate seamlessly the network access and the applications and thus bring the new multimedia services to home and business users. Among these services, those based on multipoint capabilities are expected to play a major role.    Interactive multimedia applications unlike traditional data transfer applications have stringent simultaneous requirements in terms of loss and delay jitter due to the nature of audiovisual information. In addition, such stream-based applications deliver data at a variable rate, in particular if a constant quality is required.    ATM, is able to integrate traffic of different nature within a single network creating interactions of different types that translate into delay jitter and loss. Traditional protocol layers do not have the appropriate mechanisms to provide the required network quality of service (QoS) for such interactive variable bit rate (VBR) multimedia multipoint applications. This lack of functionalities calls for the design of protocol layers with the appropriate functions to handle the stringent requirements of multimedia.    This thesis contributes to the solution of this problem by proposing new Network Adaptation and ATM Adaptation Layers for interactive VBR multimedia multipoint services.    The foundations to build these new multimedia protocol layers are twofold; the requirements of real-time multimedia applications and the nature of compressed audiovisual data.    On this basis, we present a set of design principles we consider as mandatory for a generic Multimedia AAL capable of handling interactive VBR multimedia applications in point-to-point as well as multicast environments. These design principles are then used as a foundation to derive a first set of functions for the MAAL, namely; cell loss detection via sequence numbering, packet delineation, dummy cell insertion and cell loss correction via RSE FEC techniques.    The proposed functions, partly based on some theoretical studies, are implemented and evaluated in a simulated environment. Performances are evaluated from the network point of view using classic metrics such as cell and packet loss. We also study the behavior of the cell loss process in order to evaluate the efficiency to be expected from the proposed cell loss correction method. We also discuss the difficulties to map network QoS parameters to user QoS parameters for multimedia applications and especially for video information. In order to present a complete performance evaluation that is also meaningful to the end-user, we make use of the MPQM metric to map the obtained network performance results to a user level. We evaluate the impact that cell loss has onto video and also the improvements achieved with the MAAL.    All performance results are compared to an equivalent implementation based on AAL5, as specified by the current ITU-T and ATM Forum standards.    An AAL has to be by definition generic. But to fully exploit the functionalities of the AAL layer, it is necessary to have a protocol layer that will efficiently interface the network and the applications. This role is devoted to the Network Adaptation Layer.    The network adaptation layer (NAL) we propose, aims at efficiently interface the applications to the underlying network to achieve a reliable but low overhead transmission of video streams. Since this requires an a priori knowledge of the information structure to be transmitted, we propose the NAL to be codec specific.    The NAL targets interactive multimedia applications. These applications share a set of common requirements independent of the encoding scheme used. This calls for the definition of a set of design principles that should be shared by any NAL even if the implementation of the functions themselves is codec specific. On the basis of the design principles, we derive the common functions that NALs have to perform which are mainly two; the segmentation and reassembly of data packets and the selective data protection.    On this basis, we develop an MPEG-2 specific NAL. It provides a perceptual syntactic information protection, the PSIP, which results in an intelligent and minimum overhead protection of video information. The PSIP takes advantage of the hierarchical organization of the compressed video data, common to the majority of the compression algorithms, to perform a selective data protection based on the perceptual relevance of the syntactic information.    The transmission over the combined NAL-MAAL layers shows significant improvement in terms of CLR and perceptual quality compared to equivalent transmissions over AAL5 with the same overhead.    The usage of the MPQM as a performance metric, which is one of the main contributions of this thesis, leads to a very interesting observation. The experimental results show that for unexpectedly high CLRs, the average perceptual quality remains close to the original value. The economical potential of such an observation is very important. Given that the data flows are VBR, it is possible to improve network utilization by means of statistical multiplexing. It is therefore possible to reduce the cost per communication by increasing the number of connections with a minimal loss in quality.    This conclusion could not have been derived without the combined usage of perceptual and network QoS metrics, which have been able to unveil the economic potential of perceptually protected streams.    The proposed concepts are finally tested in a real environment where a proof-of-concept implementation of the MAAL has shown a behavior close to the simulated results therefore validating the proposed multimedia protocol layers

    Layer-based coding, smoothing, and scheduling of low-bit-rate video for teleconferencing over tactical ATM networks

    Get PDF
    This work investigates issues related to distribution of low bit rate video within the context of a teleconferencing application deployed over a tactical ATM network. The main objective is to develop mechanisms that support transmission of low bit rate video streams as a series of scalable layers that progressively improve quality. The hierarchical nature of the layered video stream is actively exploited along the transmission path from the sender to the recipients to facilitate transmission. A new layered coder design tailored to video teleconferencing in the tactical environment is proposed. Macroblocks selected due to scene motion are layered via subband decomposition using the fast Haar transform. A generalized layering scheme groups the subbands to form an arbitrary number of layers. As a layering scheme suitable for low motion video is unsuitable for static slides, the coder adapts the layering scheme to the video content. A suboptimal rate control mechanism that reduces the kappa dimensional rate distortion problem resulting from the use of multiple quantizers tailored to each layer to a 1 dimensional problem by creating a single rate distortion curve for the coder in terms of a suboptimal set of kappa dimensional quantizer vectors is investigated. Rate control is thus simplified into a table lookup of a codebook containing the suboptimal quantizer vectors. The rate controller is ideal for real time video and limits fluctuations in the bit stream with no corresponding visible fluctuations in perceptual quality. A traffic smoother prior to network entry is developed to increase queuing and scheduler efficiency. Three levels of smoothing are studied: frame, layer, and cell interarrival. Frame level smoothing occurs via rate control at the application. Interleaving and cell interarrival smoothing are accomplished using a leaky bucket mechanism inserted prior to the adaptation layer or within the adaptation layerhttp://www.archive.org/details/layerbasedcoding00parkLieutenant Commander, United States NavyApproved for public release; distribution is unlimited

    ATM network impairment to video quality

    Get PDF
    Includes bibliographical reference
    corecore