5 research outputs found

    Incremental learning algorithms and applications

    Get PDF
    International audienceIncremental learning refers to learning from streaming data, which arrive over time, with limited memory resources and, ideally, without sacrificing model accuracy. This setting fits different application scenarios where lifelong learning is relevant, e.g. due to changing environments , and it offers an elegant scheme for big data processing by means of its sequential treatment. In this contribution, we formalise the concept of incremental learning, we discuss particular challenges which arise in this setting, and we give an overview about popular approaches, its theoretical foundations, and applications which emerged in the last years

    Considering Currency in Decision Trees in the Context of Big Data

    Get PDF
    In the current age of big data, decision trees are one of the most commonly applied data mining methods. However, for reliable results they require up-to-date input data, which is not always given in reality. We present a two-phase approach based on probability theory for considering currency of stored data in decision trees. Our approach is efficient and thus suitable for big data applications. Moreover, it is independent of the particular decision tree classifier. Finally, it is context-specific since the decision tree structure and supplemental data are taken into account. We demonstrate the benefits of the novel approach by applying it to three datasets. The results show a substantial increase in the classification success rate as opposed to not considering currency. Thus, applying our approach prevents wrong classification and consequently wrong decisions

    A very fast decision tree algorithm for real-time data mining of imperfect data streams in a distributed wireless sensor network

    No full text
    Wireless sensor networks (WSNs) are a rapidly emerging technology with a great potential in many ubiquitous applications. Although these sensors can be inexpensive, they are often relatively unreliable when deployed in harsh environments characterized by a vast amount of noisy and uncertain data, such as urban traffic control, earthquake zones, and battlefields. The data gathered by distributed sensors—which serve as the eyes and ears of the system—are delivered to a decision center or a gateway sensor node that interprets situational information from the data streams. Although many other machine learning techniques have been extensively studied, real-time data mining of high-speed and nonstationary data streams represents one of the most promising WSN solutions. This paper proposes a novel stream mining algorithm with a programmable mechanism for handling missing data. Experimental results from both synthetic and real-life data show that the new model is superior to standard algorithms

    Gesture Recognition from Data Streams of Human Motion Sensor Using Accelerated PSO Swarm Search Feature Selection Algorithm

    Get PDF
    Human motion sensing technology gains tremendous popularity nowadays with practical applications such as video surveillance for security, hand signing, and smart-home and gaming. These applications capture human motions in real-time from video sensors, the data patterns are nonstationary and ever changing. While the hardware technology of such motion sensing devices as well as their data collection process become relatively mature, the computational challenge lies in the real-time analysis of these live feeds. In this paper we argue that traditional data mining methods run short of accurately analyzing the human activity patterns from the sensor data stream. The shortcoming is due to the algorithmic design which is not adaptive to the dynamic changes in the dynamic gesture motions. The successor of these algorithms which is known as data stream mining is evaluated versus traditional data mining, through a case of gesture recognition over motion data by using Microsoft Kinect sensors. Three different subjects were asked to read three comic strips and to tell the stories in front of the sensor. The data stream contains coordinates of articulation points and various positions of the parts of the human body corresponding to the actions that the user performs. In particular, a novel technique of feature selection using swarm search and accelerated PSO is proposed for enabling fast preprocessing for inducing an improved classification model in real-time. Superior result is shown in the experiment that runs on this empirical data stream. The contribution of this paper is on a comparative study between using traditional and data stream mining algorithms and incorporation of the novel improved feature selection technique with a scenario where different gesture patterns are to be recognized from streaming sensor data
    corecore