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Abstract 

In the current age of big data, decision trees are one of the most commonly applied data 
mining methods. However, for reliable results they require up-to-date input data, which 
is not always given in reality. We present a two-phase approach based on probability 
theory for considering currency of stored data in decision trees. Our approach is 
efficient and thus suitable for big data applications. Moreover, it is independent of the 
particular decision tree classifier. Finally, it is context-specific since the decision tree 
structure and supplemental data are taken into account. We demonstrate the benefits of 
the novel approach by applying it to three datasets. The results show a substantial 
increase in the classification success rate as opposed to not considering currency. Thus, 
applying our approach prevents wrong classification and consequently wrong 
decisions. 
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Introduction 

In the current information age companies around the world store huge volumes of quickly changing, 
distributed, heterogeneous data (IBM Institute for Business Value 2012) to support decision making in 
areas such as marketing, investment, risk management, production, health care, etc. (Economist 
Intelligence Unit 2011; Giudici and Figini 2009; Hems et al. 2013; Ngai et al. 2009; Yue 2007). Such data 
is often called big data and is characterized by the three Vs i.e. Volume, Velocity and Variety. Data streams 
are a typical example for big data as they are characterized by both high volume and high velocity. Stored 
(big) data has business value only, if it is analyzed to discover new patterns. Thus, in a recent survey by 
the IBM Institute for Business Value (2012) more than 75% of the participants “with active big data 
efforts” (p.12) stated that they apply data analytics techniques to derive valuable insights from it. 
However, not only data quantity, but also its quality matters. 

Stored data may be outdated due to improper update frequency (e.g. address data), attribute values may 
be missing due to malfunctioning sensors or be inaccurate, because of privacy protection reasons 
(Aggarwal et al. 2013; Liang et al. 2010) or data integration problems. As a result, if such data is used for 
analysis without taking its quality into account, false patterns may be identified and thus wrong decisions 
may be made (“Garbage in, garbage out.”). According to a survey by Forbes (2010), most of the 
participants estimate the cost of poor data quality to more than $5 million annually. The problem is 
especially evident in the context of big data (Fan 2013; Li et al. 2012; Yang et al. 2012) and to demonstrate 
its importance IBM has added a fourth V to the characteristics of big data, which stands for Veracity (IBM 
Institute for Business Value 2012) and represents the uncertainty due to low data quality. 

Data quality can be defined as “the measure of the agreement between the data views presented by an 
information system and that same data in the real world” (Orr 1998, p. 67). Data quality is a multi-
dimensional concept consisting of dimensions such as currency, accuracy, completeness, etc. (Wang and 
Strong 1996). In this paper we focus on currency, as one of the most important among them (Experian 
QAS 2013; Redman 1996). We define currency as the degree to which a previously correctly stored 
attribute value still corresponds to its real world counterpart at the time of analysis. This implies that 
low currency causes uncertainty regarding the correspondence between the stored and the real-world 
attribute value which should be taken into account in data mining.  

The process of Knowledge Discovery in Databases consists of five main steps: selection, pre-processing, 
transformation, data mining and interpretation/evaluation (Fayyad et al. 1996). Among them, (big) data 
mining is the application of analytic methods to search for new patterns in the pre-processed and/or 
transformed data. The aim of classification is to assign a stored instance characterized by the values for a 
set of independent attributes to one of a predefined set of classes of a given dependent attribute. Decision 
trees are one of the most commonly applied classification methods (Tsang et al. 2011) due to their simple 
interpretation (i.e. “white box”) and efficiency. They consist of a set of non-leaf and leaf nodes, where each 
non-leaf node is characterized by a splitting independent attribute condition and each leaf node is 
characterized by a class of the dependent attribute (Vazirigianniset al. 2003; Witten and Frank 2005). 
Common applications of decision trees are credit scoring (Koh et al. 2006), fraud detection (Pathak et al. 
2011), medical diagnosis (Azar and El-Metwally 2013), and sensor networks (Yang et al. 2012). In all of 
these applications low currency causes uncertainty in the analyzed data, which should be taken into 
account in the classification process. Blake and Mangiameli (2011) confirm this point by empirically 
showing that currency has an effect on the accuracy of classification methods.  

In the literature, incorporating data uncertainty in (big) data mining is called uncertain (big) data mining 
(Aggarwal and Yu 2009; Chau et al. 2006; Leung and Hayduk 2013; Tsang et al. 2011: Yang and Fong 
2011). For example, due to the emergence of the Internet of Things, data streams are becoming one of the 
most common examples of big data in the practice and as a result a number of approaches have been 
developed for the mining of data streams (Aggarwal 2013) and in particular of uncertain data streams. 
Typical for the uncertain big data mining literature is that it does not focus on the source of uncertainty, 
but rather takes it as given without discussing how it can be derived. However, modelling this uncertainty 
properly (e.g. deriving a probability distribution) with the corresponding interpretation is just as 
important for real-world applications as incorporating it in the classification process. 

In this paper we develop a probability-theory based approach for considering currency of the attribute 
values of stored instances when classifying them in existing decision trees. The advantage of applying 
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probability theory is that it allows for a mathematically-sound modelling of uncertainty. Our approach 
addresses the Volume, Velocity and Veracity characteristics of big data. It addresses the volume by 
considering currency in an efficient way; velocity by requiring less detailed historical data than existing 
approaches for currency; and veracity by dealing with data uncertainty. Moreover, our approach is 
universal, because it is independent of the particular decision tree classifier, and adaptable to the given 
context of application and to the structure of the decision tree. 

Thus, our approach aims at extending both the data quality and the uncertain big data mining literature 
and to close the gap between them. The first stream of research is extended by proposing an efficient way 
for measuring currency in decision tress which is applicable in the context of big data. The second stream 
of research is extended by demonstrating how the uncertainty, which is assumed to be given in existing 
works, can be measured in an interpretable, efficient and context-specific way.  

The practical relevance of our approach can be illustrated by an example from the field of Customer 
Relationship Management. Consider a financial service provider who would like to conduct a campaign 
for winning new customers based on their annual income. The annual income of a customer depends 
strongly on other personal characteristics such as education, age, and employment status and this 
relationship can be modelled as a decision tree. If the personal characteristics are outdated (e.g. because 
they were stored long before the time of the campaign), the customer may be classified in the wrong 
income class and thus offered the wrong product resulting in losses for the company. 

Another example, which is a typical big data case, comes from the field of sensor measurements. Consider 
a dataset for handicapped individuals, whose movements, location, speed, etc. are measured by sensors 
integrated in their clothing. Based on the measurements and a decision tree classifier, their current 
activity is determined (Yang et al. 2012). As a result, emergency situations (e.g. an accident) can be 
detected and thus corresponding measures derived (e.g. sending an ambulance). If the data measured by 
the sensors is outdated, for example due to a delayed transmission, and if this is not considered in the 
classification, an emergency case can be detected either with a strong delay or not at all, causing serious 
consequences for the patient. 

The paper is structured as follows. In the next section we give a literature review and provide the required 
background on the topic. In the third section our approach for incorporating currency in decision trees in 
the context of big data is presented. In the fourth section it is evaluated based on three different datasets 
representing the two applications above. In the final section main conclusions are drawn and limitations 
and paths for future research are discussed. 

Related Work and Background  

Since we extend both the literature on modelling currency in decision trees and the one on uncertain big 
data mining with decision trees, in the following we first present the main findings in these two streams of 
research as well as our contribution to them. 

Modelling Currency in Decision Trees 

As mentioned above, data quality is a multi-dimensional concept including characteristics such as 
currency, accuracy, completeness (Wang and Strong 1996). In the context of data mining, lower data 
quality can be seen as causing two types of uncertainty: existential and attribute-level uncertainty 
(Aggarwal and Yu 2009). Existential uncertainty represents the uncertainty whether an attribute value 
does or does not exist (i.e. completeness), while attribute-level uncertainty stands for the uncertainty 
regarding the existing attribute value which is possibly of poor quality (i.e. concerning accuracy, currency, 
etc.).  

Existential uncertainty is well-studied by researchers (Dasu and Johnson 2003; Hawarah et al. 2009; 
Quinlan 1986; Witten and Frank 2005; Yang et al. 2012). The reason for this is that it is rather 
straightforward to measure and thus to identify it. To reduce existential uncertainty, missing attribute 
values are either replaced (i.e. imputed) based on point estimation (e.g. by the mean of the non-missing 
attribute values) or represented as a probability distribution over the domain of the attribute (Quinlan 
1986). Already Quinlan (1986) proposes a probability-theory based approach for considering data 
completeness in classifying data instances in decision trees. 
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Attribute-level uncertainty is a relatively new topic of research. A few authors have developed metrics for 
measuring accuracy (Fisher et al. 2009), currency (Ballou et al. 1998; Blake and Mangiameli 2011; Even 
and Shankaranarayanan 2007; Heinrich and Klier 2009; Heinrich and Klier 2011; Li et al. 2012; Wechsler 
and Even 2012) and other attribute-level data quality dimensions (Alpar and Winkelsträter 2014; 
Mezzanzanica et al. 2012). Since the focus of this paper is on currency, we concentrate in the further 
discussion on it. 

Based on our definition of currency above, it is very natural to interpret currency as probability. This is 
also in accordance with the literature. For example, Heinrich and Klier (2011, p. 6) interpret currency as 
“…the probability that an attribute value stored in a database still corresponds to the current state of its 
real world counterpart…” i.e. as the probability that the stored attribute value is up-to-date. Thus, we can 
estimate the currency of a stored attribute value with the help of historical data, which can be either 
publicly available (e.g. Federal Bureau of Statistics 2013) or company-internal data. To demonstrate the 
idea, consider the attribute                which can take the values 
                                 . If the stored attribute value is       , then the currency of this 
attribute value will be the probability that a person, who was single at the time of storage, is still single at 
the time of classification. Thus, currency can be defined as the conditional probability 
 (            |             ), where     is the time of classification and     is the time of storage. Based on 
the Bayes’ theorem (Berger 2010), the currency for the attribute value        can be derived as: 

 (            |             )  
 (                              )  

 (            ) 
      (1) 

where the operator     stands for the intersection of the two events. To calculate these probabilities, we 
follow the frequentist perspective (Berger 2010) according to which a probability “…is the proportion of 
the time that events of the same kind will occur in the long run.” (Miller et al. 2004, p. 24). This implies 
that the probability of a certain event is represented by the percentage of instances in the population 
characterizing this event. Thus,  

 (            |              )  
|                               ||         |

|             ||         |
 

|                               |

|             |
  (2) 

where |             | stands for the number of instances in the population who were single at the time of 
storage. Analogously, |                              | represents the number of instances in the population 
who were single both at the time of storage and at the time of classification. Finally, |         | stands for 
the total number of instances in the population. 

Calculating currency in this manner provides context-free results, which are independent of the other 
attribute values of a stored instance. This has its advantages and is in accordance with existing metrics for 
currency based on probability theory (Heinrich and Klier 2009, 2011; Li et al. 2012; Wechsler and Even 
2012). However, as the literature has shown, the context of application plays a role for the measurement 
of currency. Even and Shankaranarayanan (2007) develop context-specific metrics for different data 
quality dimensions including currency. They use a so called data utility measure, which reflects the 
business value in the specific context and give a contextual interpretation of currency as “The extent to 
which outdated data damages utility.”(p. 83). Their metric for currency is thus represented as the relative 
decrease in utility due to outdated data for a particular context. Similarly, Heinrich and Klier (2009) 
propose the use of supplemental data for a more precise estimation of currency (defined as timeliness by 
Heinrich and Klier (2009)) adapted for the particular context of application. Supplemental data is 
different from metadata such as storage age in that it is attribute-value specific. Based on this approach, 
we consider the context of application by determining the conditional probabilities, so that the probability 
that an attribute value is up-to-date depends on the values of the supplemental data.  

To demonstrate this idea, consider again the attribute                from above. The currency of the 
attribute value        can be derived much more precisely, if additional information about the personal 
characteristics of the individual is considered. For example, the age and the gender of the person would 
have an influence on the changes in his/her marital status. Given a single, 20-year-old (at the time of 
storage) female, we can compute the currency of her marital status as the conditional probability 
 (            |                             ), which after applying the Bayes’ theorem can be rewritten as: 

 (            |                              )  
 (                                             )

 (                             ) 
   (3) 
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Again, based on the frequentist perspective, (3) can be rewritten as: 

 (            |                              )  
|                                             |

|                             | 
  (4) 

The result in (4) will deliver a much more precise indication about the currency of the stored attribute 
value than the one in (2) as it considers additional information about the stored instance. However, such a 
detailed historical data is not always available in reality (Velocity) and determining the conditional 
probability for all values can be computationally rather intensive (Volume). These challenges are 
addressed by our approach. 

In this paper we aim to draw on the findings in the literature on modelling currency by 1) measuring 
currency based on the interpretation by Heinrich and Klier (2011) and 2) considering supplemental data 
in the measurement process. We extend the literature by a) proposing measurement methods, which are 
more efficient and do not require such a detailed historical data, and by b) demonstrating how the 
measured currency can be considered during the classification of stored instances in existing decision 
trees. In particular a) is very relevant in the context of big data. b) is partly based on the ideas from the 
field of uncertain big data mining. In the next subsection we discuss existing approaches in this field by 
focusing on decision trees. 

Uncertain Big Data Mining for Decision Trees 

In order to analyze uncertain big data, traditional data mining approaches need to be modified to consider 
both the characteristics of data uncertainty and these of big data. On the one hand, data uncertainty is 
considered in the field of uncertain data mining. However, most of these approaches are not suitable for 
big data because the volume and velocity of big data require more efficient methods. On the other hand, 
the field of big data mining concentrates on the efficiency of the algorithms (especially for data streams as 
one of the most common applications), but the methods there do not consider data uncertainty. The 
approaches in the field of uncertain big data mining can thus emerge either i) from the field of uncertain 
data mining by improving the efficiency of the methods, or ii) from the field of big data mining by 
increasing the robustness to uncertainty, or iii) by combining both of them. Figure 1 presents this idea. 
Since our approach is part of the first group, in the following we first describe the ideas in the field of 
uncertain data mining for decision trees. 

Classical 
Data Mining
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Data Mining
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Stream of research i) 

A number of authors have developed approaches that modify decision trees to work with attribute-level 
uncertainty, usually based on probability theory. One major group is represented by the works of Qin et al. 
(2009) and Tsang et al. (2011). In these approaches the independent attribute values of the data instances 
are assumed to be uncertain and described by a probability distribution (Qin et al. 2009). For each 
instance, these distributions are propagated down the tree by multiplying the probabilities characterizing 
a certain path of the tree. Finally, the resulting path probabilities are multiplied with the probability for a 
certain class at the leaf of each path and the probabilities for the same class are summed over the paths 
forming the class probabilities. The data instance is classified in the class with the highest class 
probability (majority vote). New decision trees are built by defining suitable splitting functions such as an 
information gain measure based on probabilistic cardinality (Qin et al. 2009). The result is a non-
probabilistic tree. Similarly, Magnani and Montesi (2010) generate a table for each possible world 
alternative (data sources) that can occur and assign to each of these tables the probability of the 
corresponding alternative. This corresponds to the probability distributions in Qin et al. (2009) and 
Tsang et al. (2011). Then, from each of the tables (i.e. based on certain data) a decision tree is built, which 
would occur with the probability of the corresponding possible world alternative. In order to classify a 
data instance, for each class and each tree, the probability that the data instance belongs to this class is 
multiplied with the probability that the tree occurs. The final probability for a given class is the sum over 
the alternative trees, similar to the class probability in Qin et al. (2009) and Tsang et al. (2011).  

The main aim of the above approaches is to consider data uncertainty in decision trees and not to provide 
efficient methods1. Thus, they need to be extended with regard to their efficiency to be applied to big data. 
To our knowledge, there is no such approach for decision trees in the literature (i.e. stemming only from 
the uncertain data mining literature). However, Leung and Hayduk (2013) extend the well-known UF-
growth algorithm for mining uncertain frequent patterns (Leung et al. 2008) for application to big data. 
Their point is that the presence of uncertainty increases the search space and thus the runtime of the 
algorithm. Thus, Leung and Hayduk (2013) apply the MapReduce framework (Aggarwal 2013) which 
efficiently mines large volumes of distributed data to identify frequent patterns in the case of big data. Our 
approach is also based on such an idea. To better justify it, in the following we discuss the papers for 
uncertain big data mining, stemming from the big data mining literature. We focus on data streams, 
which are one of the most common applications. 

Stream of research ii) 

Attribute-level uncertainty in data streams can be divided into noise and concept drift uncertainty. Noise 
is seen as data, which “do not typically reflect the main trends but makes the identification of these trends 
more difficult” (Yang 2013, p.322) and can be interpreted as representing incorrect, inaccurate or 
outdated attribute values (Zhu and Wu 2004). Concept drift describes the change in the data distribution 
over time and appears when the distribution is not stationary, but “is drifting” (Hulten and Domingos 
2001). For example, the relationship between annual income and employment status may change over 
time and as a result, the decision tree describing this relationship will change. The idea of a concept drift 
is related to currency in that it considers the development of data over time, but also differs from it, as it is 
concerned with the change in the underlying distribution over time, while currency is determined by the 
change of the corresponding attribute values in the real-world. A change in currency in the above example 
will be, if the employment status of the stored instance changes in the real world resulting in a different 
annual income class than the stored one.  

Many of the papers that deal with classifying certain data streams with decision trees are based on the 
Hoeffding bound for tree growing upon the arrival of new data. The idea is that a new split takes place 
only when there is a statistically significant support for it in the data. The most famous such approach is 
the Very Fast Decision Tree (VFDT) (Domingos and Hulten 2000), which classifies data streams 
efficiently and incrementally. Since it has been shown that the presence of noise can reduce the 
classification accuracy and increase the tree size of decision trees for data streams (Yang and Fong 2011), 
existing approaches for classifying uncertain data streams are designed to be more robust against noise as 
compared to the ones for certain data. Examples for such approaches are the extensions of the VFDT 

                                                             

1 Note, however that the authors still discuss some efficiency improvements (Tsang et al. 2011). 
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method (Yang and Fong 2011) and the FlexDT method. VFDT has been extended to account for noise by 
introducing a dynamic tie threshold based on the changing mean of the Hoeffding bound (Yang and Fong 
2011). Hashemi and Yang (2009) apply fuzzy sets in the FlexDT method to mitigate the effect of noise on 
the classification accuracy. The approach is similar to the approaches by Qin et al. (2009) and Tsang et al. 
(2011), but is based on fuzzy set theory.  

In order to consider the occurrence of a concept drift, approaches for classifying data streams use new 
instances to test the suitability of the existing decision trees. For example, Yang et al. (2012) and Hulten 
and Domingos (2001) update the sufficient statistics of the tree based on new instances and as a result 
decide if the tree structure should be changed. Hulten and Domingos (2001) grow gradually a new subtree 
which eventually replaces the old one. Hashemi and Yang (2009) backpropagate new instances up the 
tree and update the fuzzy parameters for potential changes in the data. If necessary, they grow a new 
subtree based on Hulten and Domingos (2001). Finally, Wang et al. (2003) apply ensemble classifiers to 
classify data streams and adjust their weights based on the values of new instances. As mentioned above, 
our focus is on the currency of the attribute values and not the stationary of its distribution over time. 

To sum up, the approaches for uncertain big data mining stemming from the big data mining literature 
are designed to be robust against noise and thus currency. However, they do not examine the source of the 
noise and do not model it explicitly3. This is the research gap we aim to close. 

Stream of research iii) 

An approach that has emerged from both the big data mining and the uncertain data mining literature is 
the one by Liang et al. (2010). They apply the idea for probabilistic cardinality (Qin et al. 2009) to model 
the uncertainty in data streams and update the sufficient statistics for new samples similar to Yang et al. 
(2012) and Hulten and Domingos (2001). However, they do not model the source of uncertainty.  

Typical for all the presented approaches in the uncertain big data mining literature is that uncertainty is 
considered to exist, but without providing an interpretation for it. The approaches in the uncertain data 
mining literature assume that it is given in the form of a probability distribution without discussing the 
derivation of this distribution. The works dealing with the classification of uncertain data streams do not 
model uncertainty explicitly2, but either modify their methods to increase their robustness against noise 
or update the decision trees in the case of a concept drift. Our approach contributes to the uncertain big 
data mining literature in Stream of research i). We model currency as a probability distribution and 
classify stored instances by propagating their probabilities down the tree similar to Qin et al. (2009) and 
Tsang et al. (2011). We extend the literature by a) giving an interpretation of the probabilities in the form 
of currency, b) showing how these probabilities can be efficiently determined for an application in big 
data, and c) deriving them in a context-specific way with the use of supplemental data. We have chosen 
probability theory, because: 1) it allows for a mathematically-sound modelling of uncertainty, 2) it is a 
common well-founded approach for modelling currency in the literature and 3) the literature on uncertain 
data mining is mainly based on it. In the next section we present our approach.   

A Method for Considering Currency in Decision Trees 

In this section we present our two-phase approach, which considers the currency of stored instances when 
classifying them in existing decision trees. As a result, we do not concentrate on the process of building 
the tree, but only on the classification of stored instances in existing decision trees. Therefore, our 
approach is independent of the particular decision tree classifier (e.g. CHAID, C 4.5). The considered 
independent attributes can be numerical or categorical, while categorical dependent attributes are 
assumed, which is a standard assumption in the uncertain data mining literature3 (e.g. Liang et al. 2010; 
Qin et al. 2009).  

                                                             

2 An exception here is the paper by Hashemi and Yang (2009), who apply fuzzy set theory, but we focus on 
probability theory. 

3  Otherwise, a leaf will not be characterized by a given class of the dependent attribute, but by a 
probability distribution and thus final classification will not be possible. 



Decision Analytics, Big Data, and Visualization 

8 Thirty Fifth International Conference on Information Systems, Auckland 2014  

Notation 

In order to describe the approach we first introduce some necessary notation. As mentioned above, 
decision trees aim at classifying instances according to the values of a set of independent attributes in one 
of the classes of the dependent attribute. A path in the tree begins at the root and ends in one of its leaves. 
It is thus represented by a sequence of the splitting conditions of the independent attributes and the 

corresponding class of the dependent attribute. Let   
    

            be the set of independent 

attributes with their corresponding domains   
 . Let, in addition,   

 ( )
  ( )    ( )    ( )            

represent the disjoint splitting independent attribute conditions for the attribute   
  at depth   of the tree 

(i.e. ⋃   
 ( ) 

      
 ) where   is the maximal depth of the tree. We call   

 ( )
  ( )    ( )    ( )    

        splitting subsets. Let       analogously be the dependent attribute with its corresponding 

domain    and disjoint classes             , ⋃   
 
      . A path leading to a leaf node with the class    

is then given by a sequence        {   
 ( )

    
 ( )

      
 ( )

   }                  , where   represents the 

different paths leading to the same class. A stored data instance is given by              where    
  

     represent the stored values of the corresponding independent attributes.  

 

Figure 2. Decision Tree Example 

 

To illustrate the idea, consider the tree in Figure 2, where the instances need to be classified according to 
the income of the person. The independent attributes are           (        ),               ,       , 
and     (        ), the dependent attribute is        with                         . An example 
for a path is                               (marked in Figure 2 with a dashed line) and an example 
for a stored instance that would follow this path (i.e. it would be classified in the class       ) is 
                                    .    

Since the instance which must be classified, was stored some time ago, it may be the case that some or all 
of its values are outdated at the time of classification. Not considering the currency of these values may 
result in wrong classification and thus wrong decisions. For example, for the instance 
                                    , the individual may have got married or completed his university 
education (at least 16 years of education) in the meantime and thus be in the class of medium or high 
earners. If this is not considered, wrong decisions and thus economic losses may occur. 

First Phase 

In order to consider currency in decision trees, we first need to measure it and this is the first phase of our 
approach. For this aim, we follow the interpretation from above, where currency is seen as the probability 
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that the stored attribute value is up-to-date. Thus, as discussed in the second section, currency can be 
determined independently of the given decision tree based on the percentage of instances in the 
population which had the stored attribute value (e.g. single) at the time of storage and still have it at the 
time of classification (e.g. are still single).  

This way of determining currency derives the probability for every possible value in the domain of the 
independent attribute separately. However, it is rather impractical, especially in the context of big data, 
since it requires reliable and detailed historical data and is computationally very intensive. Moreover, for 
decision trees, this high precision of the estimations is very rarely needed. The reason is that the splitting 
subsets in decision trees are often sets or intervals rather than single values. This is especially true for 
numerical attributes such as           or    , but may also occur with categorical attributes such as 
               or         . For example, in Figure 2 the splitting subsets for the attribute                

are given by the sets   
 ( )

          and   
 ( )

                             and for           by the 

intervals   
 ( )

       ,   
 ( )

        ,   
 ( )

      ). As a result, for a correct classification, it is not 

anymore crucial that the stored attribute value is up-to-date. Rather, it is enough that even if the value 
changed in reality, it still belongs to the same splitting subset. For example, in Figure 2, if the stored 
attribute value is         and the person is          at the time of classification, the correct 
classification of the stored instance will not be affected. 

Thus, we propose an approach for considering currency in decision trees which is based on the splitting 
subsets of the particular tree. To describe the idea, consider for some            the attribute value    

from the stored instance             with the splitting subset(s)4   
  ( )

 such that      
  ( )

 i.e. the 

attribute   
  is at depth   of the tree. We call   

  ( )
 storage splitting subset(s). Then the currency of    is 

the probability that the instances which attribute values were in   
  ( )

 upon storage are still in it upon 

classification. We denote this probability by   
  ( )

. If the stored attribute value is up-to-date, then 

  
  ( )

  . This probability can be derived from historical data based on the Bayes’ theorem. For example, 

in Figure 2 and           ,   
 ( )

 will be the probability that during the time span between storing and 
classifying the instance, a person with less or equal to ten years of education at the time of storage did not 
study more than ten years until the time of classification. This implies that a stored instance with 

           will follow the path to   
 ( )

        with a probability   
 ( )

. As a result, it will follow the 

path to   
 ( )

         or to   
 ( )

      ) with a total probability of     
 ( )

. The exact probability with 

which the stored instance will follow each of these two paths is then the probability that the stored 
attribute value changed between storage and classification to a value, which belongs to one of the two 

splitting subsets. For example, for   
 ( )

 this is the probability that a person who had less or equal to ten 

years of education at the time of storage, has received between eleven and fifteen years of education until 

the time of classification. It can be derived analogously to   
 ( )

 from historical data.  

Note that, in order to determine all these probabilities, we only need to know the corresponding storage 

splitting subset(s)   
  ( )

 and the structure of the tree. Thus, they can be derived independently of the 

stored instances (for all splitting subsets   
  ( )

) resulting in higher efficiency. Let, for each possible 

storage splitting subset   
  ( )

 (i.e. each splitting subset of the tree),   
 ( )

 represent the so derived 

probabilities for each splitting subset   
 ( )

 (including   
  ( )

) at the time of classification. We call   
 ( )

 the 

node probability of   
 ( )

 for the storage splitting subset   
  ( )

. Then, for a given stored instance   
          and for each of its stored attribute values             , only the corresponding storage 

splitting subset(s)   
  ( )

 with      
  ( )

 need(s) to be identified to derive the node probabilities for 

           . Figure 3 provides the node probabilities for the tree in Figure 2 and the stored instance 
                                    .  

 

                                                             

4 Note that an independent attribute may happen to be more than once in a tree a splitting independent 
attribute. 
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Figure 3. An Example for Considering Currency in a Decision Tree 

 

This completes the description of the derivation of the node probabilities and thus the first phase of the 
algorithm. By deriving the node probabilities according to the splitting subsets of the decision tree, we 
model them more efficiently than the existing approaches for measuring currency. In addition, such a 
derivation considers the structure of the decision tree and thus the context of application. Finally, as 
opposed to the approaches in the uncertain big data mining literature, these probabilities have an 
interpretation based on the currency of the stored attribute values.   

Second Phase 

The second phase consists of classifying the stored data instance, which follows a certain path to reach a 
leaf with a class for the independent attribute. Based on the results from the first phase, for a given stored 

instance, we can assign to each path        {   
 ( )

    
 ( )

      
 ( )

   }                   a sequence of the 

corresponding node probabilities {   
 ( )

    
 ( )

      
 ( )

}                  . For example, in Figure 3, the 

node probabilities for the path                               are given by          . This implies that 
the first splitting subset in the path will be followed with a probability of 0.3 and the second one will be 
followed with a probability 0f 0.7. In the next step, we need to determine the total probability that the 
stored instance follows a particular path, which we call path probability. We derive it, based on the 
uncertain data mining literature, by multiplying the node probabilities of the splitting subsets of the path. 
In the example above, the path probability that the instance                                      
follows        is 0.21. Figure 3 provides the path probabilities for this instance and all the possible paths 
in the tree.  

In order to classify the stored instance in a particular class, we consider the path probabilities for each of 
the classes. In Figure 3 the stored instance will be classified in the income class     either if it follows 
       (i.e. a probability 0f 0.21) or if it follows                                    (i.e. a probability 
of 0). To determine the probability with which a given instance belongs to a class, we sum the 
probabilities of all the paths leading to this class (e.g. in Figure 3 for the class “low” 0.21+0) and call this 
class probability. Note that summation is possible because the splitting subsets are disjoint sets. Finally, 
the stored data instance is classified in the class with the highest class probability. In Figure 3 the instance 
                                     is assigned to the class        with a class probability of 0.79.  

 

Node 2
Marital 
status

Node 1
Education

Node 4
Age

Single
Married,
Divorced,
Widowed

  [31,50]≤30 ≥51

Node 3
Gender

Male Female

0.20.5

0.21 0.09 0.5 0 0.2 00

Node 11
Annual 

income class 
high

0

Node 10
Annual 

income class 
middle

0

Node 9
Annual 

income class 
middle

1

Node 8
Annual 

income class 
low

0

Node 7
Annual 

income class 
middle

1

Node 6
Annual 

income class 
middle

0.3

Node 5
Annual 

income class 
low

0.7

0.3

≥16 years
  [11,15] years

≤10 years

Low: 0.21 Middle: 0.79 High: 0Class probabilities

Path probabilities

Node probabilities



 Currency in Decision Trees for Big Data 
  

 Thirty Fifth International Conference on Information Systems, Auckland 2014 11 

Classifying the instance in the class with the highest class probability corresponds to the majority vote 
from the literature concentrating on the combination of multiple classifiers (Fred 2001; Kittler et al. 1998; 
Kuncheva 2004; Seewald et al. 2001). The idea is that the different paths, an instance could follow, 
represent the different classifiers and the class of a path and the path probability stand for the result and 
the probability of each of the classifiers, respectively. According to the majority vote, the instance is 
assigned to the class with the highest class probability among the classifiers. In such cases ties are either 
resolved arbitrarily (Kuncheva 2004; Street and Kim 2001) or based on the prior probability of the 
particular class, which is the number of instances in the training set that belong to this class (Seewald et 
al. 2001). In case the prior probabilities are also equal, then the class is chosen arbitrarily. We resolve ties 
arbitrarily, as we believe that it is important that our method remains independent of the particular 
training set, not least due to efficiency reasons. This completes the description of the second phase of our 
approach, which is based on the ideas in the uncertain data mining literature. In Figure 4 the whole 
approach is summarized.  

Phase I: Derivation of the node probabilities 

1. For each splitting subset   
  ( )

                                of the tree 

i. Based on historical data, determine the node probability   
  ( )

 that an attribute value which 

belonged to   
  ( )

 at the time of storage still belongs to it at the time of classification 

ii. For all   
 ( )

 with      determine the node probabilities   
 ( )

 that an attribute value 

which belonged to   
  ( )

 at the time of storage belongs to   
 ( )

 at the time of classification 

iii. Store the node probabilities   
 ( )

           from 1.a or 1.b with   
  ( )

 

2. For each stored instance              

i. For each stored attribute value               

a. Identify the storage splitting subset(s)   
  ( )

 s.t.      
  ( )

  

b. For each   
  ( )

 from a. assign to the splitting subsets   
 ( )

          the 

probabilities   
 ( )

           stored with   
  ( )

 in 1.iii 

Phase II: Classification of the stored instance 

1. For each path        {   
 ( )

    
 ( )

      
 ( )

   }                             in the 

tree with the corresponding probabilities {   
 ( )

    
 ( )

      
 ( )

}                   derived in 

Step I.1.d determine the path probability        ∏    
 ( ) 

     

2. For each class of the dependent attribute             , sum the probabilities for the paths 

of the type        to determine the class probability 

3. Classify the data instance in the class              with the highest class probability (in 
case of a tie choose the class randomly) 

Figure 4. A Two-Phase Method for Incorporating Currency in Decision Trees 

 

In order to demonstrate the efficiency of our approach, we compare its complexity to the complexity of the 
approach presented in the second section. It is enough to compare only the complexities of the calculation 
of the node probabilities (i.e. Step 1 of Phase I) as we assume that in the other steps the two approaches 
are identical5. We calculate the complexity for our approach based on Figure 4. The complexity for Steps 
                                                             

5 The approach in the second section was not developed for the application to decision trees. This is an 
assumption we make to be able to compare the two approaches. 
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1.i-1.iii depends on the available historical data. If the historical dataset consists of   instances, for each 

  
  ( )

 the algorithm will take  ( ) for each splitting subset. Thus, Step 1 requires  (       ), where 

     represents the maximal number of splitting subsets for a given attribute and   stands for the 
number of attributes. In the approach from the second section, for each attribute the probabilities for all 
possible stored attribute values need to be determined. This results in a complexity in  (          ), 
where      represents the maximal number of different stored independent attribute values for a given 
attribute. Already here the complexity of our approach is lower or equal (in the worst case) to in the 
second section, because          , especially for numeric attributes. This proves the efficiency of our 
approach. In the next subsection we show how the node probabilities can be more precisely and context-
specifically modelled based on supplemental data. 

Supplemental Data 

In the approach presented above, the node probabilities are determined for each splitting subset without 
considering the values of the other attributes. This implies, for example in Figure 3, for the splitting 
subset        and for the instance                                      that the probability for a 
person staying single in the time span between storage and classification is independent of supplemental 
data such as the years of education, gender, and age of this person. However, as mentioned in the second 
section, the literature has shown that considering supplemental data can lead to a more precise, context-
specific estimation. Thus, it is reasonable to modify the derivation of the node probabilities for a given 

instance so that not only   
  ( )

 is considered, but also the other stored values. Based on the discussion 

above, for a given stored instance              we would derive   
 ( )

 as the probability that    belongs to 

  
 ( )

 at the time of classification provided that the values of the other attributes were                     
at the time of storage. 

This approach considers high amount of additional information in the derivation of the probabilities, but 
it is again very impractical in the context of big data since very detailed historical data is required to 
determine all the probabilities. For example, for the instance                                      and 
the attribute value       , we need historical data on the males, who were 18-year-old, single, and had ten 
years of education at the time of storage, and who got married until the time of classification. To avoid 
this problem and make the approach better applicable in the context of big data, we consider as 
supplemental data only the stored attribute values which precede the stored value in the path. Moreover, 
we do not calculate the probabilities based on single values such as 18 year old, but rather use the 
corresponding splitting subset of the tree (e.g. ≤ 30 year old). Thus, we still determine the node 

probabilities   
 ( )

 based on supplemental data, but with fewer and less granular conditions. For example, 

for                                      and the stored attribute value         the node probability 

  
 ( )

 for the path                               will be derived by considering all singles who had less 

or equal to 10 years of education at the time of storage without posing any additional restrictions on their 
gender or age.  

This approach is very reasonable in the context of decision trees, since the order of the independent 
attributes represents their importance with respect to the classification of the dependent attribute. The 
root is the most important attribute and with increasing depth the importance decreases. Moreover, a 
path in the tree is also a sequence of conditions, where each consecutive condition is considered, only if 
the preceding one is fulfilled and regardless of the stored attribute values, which are not part of the path. 
For example, for                                      and the path                                
the fact that the person is an 18-year-old male is not relevant for the classification and would thus not 
influence the result when incorporating currency.  

In some cases, due to missing historical data, it may happen that a given node probability is zero. This is 
especially the case when supplemental data is used as detailed historical data is needed, which is not 
always available in reality. The problem is then that these zero probabilities are propagated down the tree 
and no instance is classified in the corresponding class. To solve this “zero-frequency-problem” we apply a 
smoothing technique by transforming the zero probabilities with a Laplace transformation. This approach 
is often used in data mining for such situations (Witten and Frank 2005). 
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To sum up, in this section we have presented our novel approach for considering currency in decision 
trees. The presented two-phase algorithm is interpretable, universal, context-specific, and efficient. It is 
interpretable, because currency is interpreted as probability. In addition, it is universal, because it is 
independent of the particular decision tree classifier. Moreover, it is context-specific, because both 
determining the node probabilities and considering supplemental data strongly depend on the stored 
instance and on the structure of the tree. Finally and most importantly in the context of big data, it is 
efficient because 1) it only modifies the process of classifying stored instances and not the decision tree 
algorithm itself, 2) it determines the node probabilities based on the set of splitting subsets and not on a 
single value and 3) it incorporates supplemental data based on the tree structure and not on all the stored 
values. In the next section our approach is evaluated with three real-world datasets. 

Evaluation 

In this section we evaluate our approach by applying it to three different datasets for the two applications 
presented in the introduction. The first dataset consists of the publicly available panel data from the SOEP 
(2012)6 where for each year the personal characteristics (age, gender, marital status, education, industry, 
employment status, annual income, etc.) of the same individuals are stored. This dataset represents the 
Customer Relationship Management scenario, in which a financial service provider conducts a campaign 
to attract new customers based on their annual income. It derives the relationship between the annual 
income of the customers and their personal characteristics, based on an up-to-date database of existing 
customers, in the form of a decision tree. Since the CRM campaign took place some time ago, some of the 
stored personal characteristics of the people who took part in it may be outdated resulting in a wrong 
income class. Since the company targets the customers according to their income, this may lead to the 
wrong product being offered and thus economic losses. 

The second dataset is from the UCI Machine Learning Repository (Bache and Lichman 2014), which is a 
source commonly used in the big data mining literature. The dataset is called “Localization Data for 
Posture Reconstruction” and contains the results from sensors attached to four different parts of the body 
of individuals who were performing different activities in a number of sessions. For each sensor, its x, y 
and z coordinates are given. This dataset stands for the scenario mentioned in the introduction for 
handicapped individuals, where the aim is to determine the current activity of the patient based on the 
measurements coming from the sensors. The data is used to build the relationship between the sensors 
and their values on the one side and the current activity on the other side in the form of the decision tree. 
Based on this tree, instances stored some time ago (this time span can also be as small as a couple of 
minutes) are classified to determine the current activity of the individuals. If the currency of the sensor 
values is not taken into account, wrong activities may result causing the wrong responses, which may have 
devastating consequences. 

Finally, the third dataset was generated by a mobile application, developed for the purpose of this paper 
and can be provided upon request. This dataset also represents the scenario for handicapped individuals, 
but as opposed to the second one, it contains the values of all the sensors of a mobile device, thus 
extending the scenario by considering the development in mobile technologies. Nowadays, many 
companies develop mobile applications that are applied for activity recognition7. In the case of elderly and 
handicapped care, such applications can increase the probability of an appropriate response and also 
result in higher acceptance as it is enough to have a mobile device and not many different sensors 
attached to the body. Thus in this scenario, the relationship between the current activity of a person and 
the values from the sensors delivered from the mobile application is examined in the form of a decision 
tree. As for the second dataset, the stored sensor values may be outdated (e.g. due to wrong transmission, 
sensor error, etc.) resulting in the wrong activity and thus a wrong response. In the next subsection we 
provide the evaluation procedure we follow to demonstrate the advantages of our approach and describe 
the three datasets in detail. 

                                                             

6 The data used in this publication was made available to us by the German Socio-Economic Panel Study 
(SOEP) at the German Institute for Economic Research (DIW), Berlin. 

7 E.g. https://actitracker.com/ 
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Data and Evaluation Procedure 

In order to evaluate our approach we define for each of the three datasets a point in time in which the data 
was stored (t0) and another, later point in time in which the classification takes place (t1). Then each of the 
three datasets is randomly divided into three mutually exclusive subsets, which are then used to derive 
the training and test set (approx. 50% of the instances), the currency set (approx. 25% of the instances) 
and the validation set (approx. 25% of the instances). 
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Figure 5. Evaluation Procedure 

 

The evaluation procedure is presented in Figure 5. In Step 1 the decision tree is built and its accuracy is 
tested based on the training and test set. This set contains the values of the independent attributes and of 
the dependent attribute of the instances for t1 and represents the real world values at the time of 
classification. In Step 2 the validation set, which contains the values for the independent attributes of the 
individuals for both t0 and t1, is divided into two validation subsets according to the point of acquisition. 
In Step 3 the decision tree is applied to the validation subset for t0 and the result is the class of the 
dependent attribute based on the values of the independent attributes for t0 and the decision tree for t1. In 
Step 4 the currency set is used to determine the node probabilities for the independent attribute values 
in t1, given the stored independent attribute values in t0. This set contains the values for the independent 
attributes for both t0 and t1. The node probabilities are used in this step to classify the stored instances 
from the validation subset for t0 in the decision tree for t1. The result is the class of the dependent 
attribute based on the decision tree for t1 and the values of the independent attributes in t0 after 
considering the currency of the stored attributes. To determine the success rate of our approach, in Step 
5 the decision tree is applied to the validation subset for t1 and the resulting classes (corresponding to the 
real-world classes of the independent attribute in t1) are compared with the classes from Step 3 and Step 
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4. We additionally restrict the validation and the currency sets to instances, for which the attribute value 
corresponding to the root of the tree changed to demonstrate our approach. Note that in the case when 
currency is considered, we additionally examine the results for incorporating supplemental data. In the 
following we describe the three datasets in detail. 

The first dataset is the panel data SOEP (2012) from which we consider t0=2001 and t1=2011, as 2011 is 
the last year the dataset. We filter only the individuals that are contained in both datasets resulting in 
9522 instances. The dependent variable for this dataset is the annual income of the individuals and the 
independent variables are:              which shows if the individual is currently in training; 
          , which gives the employment status of the individual;          , which stands for the 
number of years of education;                                and       . Since the dependent attribute 
for the decision tree is categorical, we categorize the annual income in classes with the software tool IBM 
Corp. Released (2011) so that each class contains an approximately equal part of the individuals in the 
panel data. Note that if this is not done, as mentioned above, the result will not be a distribution over the 
classes, but rather a distribution over the distributions of the income in the different leaves. Thus 
determining the final class will not be possible, which is crucial in real-world applications.  

The second dataset is the “Localization Data for Posture Reconstruction” consisting of 164860 instances, 
where each instance consists of the person who was measured (5 people), the session (5 sessions per 
person), the type of sensor (4 sensors), the time of measurement, a unique timestamp, the sensor’s three 
coordinates, and the current activity of the individual (4 activities). The independent variables are       , 
      ,            ,             and            . The dependent variable is         . t0 was chosen to 
represent the first two sessions, while t1 was chosen to represent the second two sessions. 

The third dataset was gathered with a mobile device with an Android 4.4.2 operating system and a Quad-
Core Qualcomm Snapdragon 600 processor. The dataset consists of 1839062 instances in two sessions 
(for t0 and t1). The dependent attribute is again          (4 classes based on Wu et al. 2011) and the 
independent attributes are the values of the sensors of the device (18 sensors). Most sensors had three 
values and thus for a better comparison to the second dataset, we omitted the sensors with less or more 
than three values. In the next subsection we present the decision tree. 

Decision Trees 

We applied to the training and test set of each of the three datasets above both the CHAID and the C4.5 
algorithm (Step 1 in Figure 5). The CHAID is based on the chi-squared test of independence and results in 
non-binary trees (Kass 1980). The C4.5 is based on an information gain measure and also results in non-
binary trees (Quinlan 1993). We used IBM Corp. Released (2011) with default options and an adjustable 
depth (depending on the dataset) for the CHAID algorithm, and WEKA (Hall et al. 2009) with reduced-
error pruning and a minimum number of instances (depending on the dataset) for C4.5. For CHAID all 
the p-values were significant at the 5%-level. We tested the models with both a randomly chosen test set 
(33 %) and a cross validation (10-fold). The accuracy of the decision trees is presented in Table 1. We can 
see that depending on the dataset, the method, and the validation, the results may differ, but generally the 
accuracies are reliable enough for the models to be considered for further analysis. 

Table 1. Accuracy of the Decision Trees 

Dataset/Method CHAID a  CHAID b C4.5 a C4.5 b 

1 71% 74% 73% 74% 

2 65% 67% 71% 73% 

3 75% 77% 77% 78% 

Legend: a = Test set, b = Cross validation 

Performance of the New Approach 

As presented in Figure 5, to evaluate our approach we conduct Steps 3-5 based on the models from Table 
1. The results are presented in Table 2. As we can see, considering currency leads always to higher success 
rate than not doing so and also considering supplemental data can additionally increase the success rate. 
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The success rate of supplemental data would be even higher, if the trees contained attributes that strongly 
changed according to the additional information, which is not the case in the models in Table 1.  

Table 2. Comparison of the Success Rates of the Approaches  

Dataset/Method CHAID i CHAID ii CHAID iii C4.5 i C4.5 ii C4.5 iii 

1 a 6% 33% 33% 5% 31% 31% 

1 b 7% 29% 29% 7% 29% 29% 

2 a 33% 59% 60% 30% 54% 60% 

2 b 32% 62% 62% 30% 44% 48% 

3 a 45% 63% 63% 51% 73% 73% 

3 b 46% 64% 65% 37% 53% 53% 

Legend: a = Test set, b = Cross validation,  
i =without currency, ii =with currency, iii =with currency and supplemental data 

 

Finally, to demonstrate the efficiency of our approach, we measured the runtimes of computing the node 
probabilities with our approach and with the approach presented in the second section. Note that, as 
mentioned above, to conduct this comparison certain assumptions need to be made and the approach of 
the second section needs to be additionally modified. We measured the runtimes on two different 
machines (M1 with Intel(R) Core™ i5-2520M CPU @ 2.50GHz, 4.00 GB RAM and M2 with Intel(R) 
Core™2 Duo CPU T6570 @ 2.10GHz, 4.00 GB RAM) to test the reliability of the results. As we can see 
and as shown in the third section, our approach is always faster than the one presented in the second 
section which proves its efficiency.  

Table 3. Runtimes of the Approaches in milliseconds 

Method/Dataset 1a(M1 
/M2) 

1b(M1 
/M2) 

2a(M1 
/M2) 

2b(M1 
/M2) 

3a(M1 
/M2) 

3b(M1 
/M2) 

CHAID I ii 47/ 

78 

47/ 

94 

281/ 

280 

297/ 

577 

5546/ 

10358 

6156/ 

11840 

CHAID II ii 47/ 

78 

47/ 

78 

218/ 

250 

203/ 

296 

5437/ 

10093 

6062/ 

11606 

C4.5 I ii 47/ 

109 

62/ 

109 

187/ 

218 

203/ 

296 

1484/ 

2153 

1797/ 

3183 

C4.5 II ii 47/ 

78 

63/ 

109 

172/ 

203 

172/ 

296 

1312/ 

2121 

1907/ 

3135 

CHAID I iii 62/ 

94 

78/ 

171 

875/ 

1689 

972/ 

1873 

100159/ 

443448 

102324/ 

459578 

CHAID II iii 62/ 

94 

62/ 

109 

844/ 

1436 

953/ 

1592 

99273/ 

441532 

101944/ 

456993 

C4.5 I iii 63/ 

109 

156/ 

250 

33797/ 

68267 

61817/ 

159574 

677299/ 

2484836 

748587/ 

3192598 

C4.5 II iii 46/ 

78 

156/ 

128 

33344/ 

66785 

61750/ 

128992 

602771/ 

2479723 

717455/ 

3141878 

Legend: a = Test set, b = Cross validation, ii =with currency, iii =with currency and supplemental 
data, I = approach from the second section, II= our approach 
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Availability of an Up-to-Date Training and Test Set 

In our approach and thus in the evaluation above, we implicitly assume the existence of an up-to-date 
Training and Test set for building a decision tree that describes the current relationships. If this is not the 
case and there is a concept drift in the data, then the relationships presented in the tree may be outdated. 
Such a situation may occur when in the CRM-scenario the company does not possess the up-to-date 
information of its current customers, as a customer is not obliged to inform the insurer regarding all 
changes in his/her personal characteristics. It may also occur if there is no up-to-date available data about 
the sensor measurements and the corresponding activities in the handicapped-people-scenario. In such a 
situation, the approaches from the uncertain big data mining literature presented above (e.g. Tsang et al. 
2011) can be applied to modify the decision tree. This will reduce the accuracy and increase the runtime of 
the approach with increasing negative effects for more outdated data. However, the results will still be 
better than not considering currency as the decision tree in both cases is the same and only the 
classification of stored instances is determined by the two approaches. 

Conclusion 

In this paper we present an approach for considering currency in the decision tree classification method 
in the context of big data. Our idea is based both on the literature for modelling currency and on the one 
for uncertain big data mining in decision trees. Based on the first stream of research, we demonstrate how 
currency can be derived for the consideration in decision trees in an efficient and context-specific way. In 
particular, we show how the probability, which commonly represents currency in the literature, can be 
derived with little historical data and depending on the structure of the decision tree. This makes our 
approach suitable for the context of big data. In addition, we demonstrate how this probability can be 
refined through the use of supplemental data, but again in an efficient and decision-tree-specific way. 
Based on these considerations, we determine the node probabilities for a given stored instance and a 
decision tree and apply the ideas from the uncertain data mining literature to classify these stored 
instances. We extend this stream of research by showing how the uncertainty, which is assumed to be 
given by the authors there, can be derived in an interpretable, efficient and context-specific way, where 
the interpretation is given by the currency of stored data. The applicability and the contribution of our 
approach are demonstrated based on three different datasets, two of which stemming from the context of 
big data. The results demonstrate that our approach leads to a substantial improvement in the 
classification accuracy as opposed to not considering currency and also that it is more efficient than the 
approach presented in the second section. 

Our method also has some limitations. First of all, it is developed for decision trees. However, the problem 
of input data of low quality is just as relevant for other data mining methods such as clustering, for 
example. The idea to develop an approach based on the data quality and the uncertain data mining 
literature can be applied there in a similar fashion. In addition, in some cases (especially with 
supplemental data) historical data may not be provided. An alternative idea would be to consider expert 
estimations instead. These can be modelled with fuzzy set theory based on fuzzy decision trees (Yuan and 
Shaw 1995) and fuzzy metrics for currency (Heinrich and Hristova 2014). Moreover, in the future our 
approach can be additionally optimized by using new methods such as the MapReduce framework 
(Aggarwal 2013) for even more efficient application in the context of big data. Finally, applying the 
approach to other types of big data such as data streams or unstructured data, for example, will be an 
additional challenge for future research.  
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