564 research outputs found

    Reconfigurable cable driven parallel mechanism

    Get PDF
    Due to the fast growth in industry and in order to reduce manufacturing budget, increase the quality of products and increase the accuracy of manufactured products in addition to assure the safety of workers, people relied on mechanisms for such purposes. Recently, cable driven parallel mechanisms (CDPMs) have attracted much attention due to their many advantages over conventional parallel mechanisms, such as the significantly large workspace and the dynamics capacity. In addition, it has lower mass compared to other parallel mechanisms because of its negligible mass cables compared to the rigid links. In many applications it is required that human interact with machines and robots to achieve tasks precisely and accurately. Therefore, a new domain of scientific research has been introduced, that is human robot interaction, where operators can share the same workspace with robots and machines such as cable driven mechanisms. One of the main requirements due to this interaction that robots should respond to human actions in accurate, harmless way. In addition, the trajectory of the end effector is coming now from the operator and it is very essential that the initial trajectory is kept unchanged to perform tasks such assembly, operating or pick and place while avoiding the cables to interfere with each other or collide with the operator. Accordingly, many issues have been raised such as control, vibrations and stability due the contact between human and robot. Also, one of the most important issues is to guarantee collision free space (to avoid collision between cables and operator and to avoid collisions between cables itself). The aim of this research project is to model, design, analysis and implement reconfigurable six degrees of freedom parallel mechanism driven by eight cables. The main contribution of this work will be as follow. First, develop a nonlinear model and solve the forward and inverse kinematics issue of a fully constrained CDPM given that the attachment points on the rails are moving vertically (conventional cable driven mechanisms have fixed attachment points on the rails) while controlling the cable lengths. Second, the new idea of reconfiguration is then used to avoid interference between cables and between cables and operator limbs in real time by moving one cable’s attachment point on the frame to increase the shortest distance between them while keeping the trajectory of the end effector unchanged. Third, the new proposed approach was tested by creating a simulated intended cable-cable and cable-human interference trajectory, hence detecting and avoiding cable-cable and cable-human collision using the proposed real time reconfiguration while maintaining the initial end effector trajectory. Fourth, study the effect of relocating the attachment points on the constant-orientation wrench feasible workspace of the CDPM. En raison de la croissance de la demande de produits personnalisés et de la nécessité de réduire les coûts de fabrication tout en augmentant la qualité des produits et en augmentant la personnalisation des produits fabriqués en plus d'assurer la sécurité des travailleurs, les concepteurs se sont appuyés sur des mécanismes robotiques afin d’atteindre ces objectifs. Récemment, les mécanismes parallèles entraînés par câble (MPEC) ont attiré beaucoup d'attention en raison de leurs nombreux avantages par rapport aux mécanismes parallèles conventionnels, tels que l'espace de travail considérablement grand et la capacité dynamique. De plus, ce mécanisme a une masse plus faible par rapport à d'autres mécanismes parallèles en raison de ses câbles de masse négligeable comparativement aux liens rigides. Dans de nombreuses applications, il est nécessaire que l’humain interagisse avec les machines et les robots pour réaliser des tâches avec précision et rapidité. Par conséquent, un nouveau domaine de recherche scientifique a été introduit, à savoir l'interaction humain-robot, où les opérateurs peuvent partager le même espace de travail avec des robots et des machines telles que les mécanismes entraînés par des câbles. L'une des principales exigences en raison de cette interaction que les robots doivent répondre aux actions humaines d'une manière sécuritaire et collaboratif. En conséquence, de nombreux problèmes ont été soulevés tels que la commande et la stabilité dues au contact physique entre l’humain et le robot. Aussi, l'un des enjeux les plus importants est de garantir un espace sans collision (pour éviter les collisions entre des câbles et un opérateur et éviter les collisions entre les câbles entre eux). Le but de ce projet de recherche est de modéliser, concevoir, analyser et mettre en œuvre un mécanisme parallèle reconfigurable à six degrés de liberté entraîné par huit câbles. La principale contribution de ces travaux de recherche est de développer un modèle non linéaire et résolvez le problème de cinématique direct et inverse d'un CDPM entièrement contraint étant donné que les points d'attache sur les rails se déplacent verticalement (les mécanismes entraînés par des câbles conventionnels ont des points d'attache fixes sur les rails) tout en contrôlant les longueurs des câbles. Dans une deuxième étape, l’idée de la reconfiguration est ensuite utilisée pour éviter les interférences entre les câbles et entre les câbles et les membres d’un opérateur en temps réel en déplaçant un point de fixation du câble sur le cadre pour augmenter la distance la plus courte entre eux tout en gardant la trajectoire de l'effecteur terminal inchangée. Troisièmement, la nouvelle approche proposée a été évaluée et testée en créant une trajectoire d'interférence câble-câble et câble-humain simulée, détectant et évitant ainsi les collisions câble-câble et câble-humain en utilisant la reconfiguration en temps réel proposée tout en conservant la trajectoire effectrice finale. Enfin la dernière étape des travaux de recherche consiste à étudiez l'effet du déplacement des points d'attache sur l'espace de travail réalisable du CDPM

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Tension vector and structure matrix associated force sensitivity of a 6-DOF cable-driven parallel robot

    Get PDF
    This paper investigates the force sensitivity of 6-DOF cable-driven parallel robots (CDPRs) in order to propose a better force measurement device. Kinematics and dynamics for a CDPR of n-DOF are deduced and formulated, and algorithms for calculating the cable tension are developed. Then, by defining geometrical parameters related to the dimensions and configurations of the CDPRs, optimal methods for determining force sensitivity with respect to the structure matrix and twist vector of the 6-DOF CDPRs with two different moving platforms (i.e. a cubic-shaped, and a flat moving platform) are proposed. By using numerical examples integrated with external twists obtained from wind tunnel tests, simulations and analysis for the two type of 6-DOF CDPRs are carried out. The simulation results help identify the optimal dimensions that can be used to design 6-DOF-CDPR-based force measuring devices with high force sensitivity. Experiment validation is also conducted to verify the method proposed in this paper

    FASTKIT: A Mobile Cable-Driven Parallel Robot for Logistics

    Get PDF
    International audienceThe subject of this paper is about the design, modeling, control and performance evaluation of a low cost and versatile robotic solution for logistics. The robot under study, named FASTKIT, is obtained from a combination of mobile robots and a Cable-Driven Parallel Robot (CDPR). FASTKIT addresses an industrial need for fast picking and kitting operations in existing storage facilities while being easy to install, keeping existing infrastructures and covering large areas. The FASTKIT prototype consists of two mobile bases that carry the exit points of the CDPR. The system can navigate autonomously to the area of interest. Once the desired position is attained, the system deploys the CDPR in such a way that its workspace corresponds to the current task specification. The system calculates the required mobile base position from the desired workspace and ensures the controllability of the platform during the deployment. Once the system is successfully deployed, the set of stabilizers are used to ensure the prototype structural stability. Then the prototype gripper is moved accurately by the CDPR at high velocity over a large area by controlling the cable tension

    LaryngoTORS: a novel cable-driven parallel robotic system for transoral laser phonosurgery

    Get PDF
    Transoral laser phonosurgery is a commonly used surgical procedure in which a laser beam is used to perform incision, ablation or photocoagulation of laryngeal tissues. Two techniques are commonly practiced: free beam and fiber delivery. For free beam delivery, a laser scanner is integrated into a surgical microscope to provide an accurate laser scanning pattern. This approach can only be used under direct line of sight, which may cause increased postoperative pain to the patient and injury, is uncomfortable for the surgeon during prolonged operations, the manipulability is poor and extensive training is required. In contrast, in the fiber delivery technique, a flexible fiber is used to transmit the laser beam and therefore does not require direct line of sight. However, this can only achieve manual level accuracy, repeatability and velocity, and does not allow for pattern scanning. Robotic systems have been developed to overcome the limitations of both techniques. However, these systems offer limited workspace and degrees-of-freedom (DoF), limiting their clinical applicability. This work presents the LaryngoTORS, a robotic system that aims at overcoming the limitations of the two techniques, by using a cable-driven parallel mechanism (CDPM) attached at the end of a curved laryngeal blade for controlling the end tip of the laser fiber. The system allows autonomous generation of scanning patterns or user driven freepath scanning. Path scan validation demonstrated errors as low as 0.054±0.028 mm and high repeatability of 0.027±0.020 mm (6×2 mm arc line). Ex vivo tests on chicken tissue have been carried out. The results show the ability of the system to overcome limitations of current methods with high accuracy and repeatability using the superior fiber delivery approach

    Maximal cable tensions of a N-1 cable-driven parallel robot with elastic or ideal cables

    Get PDF
    International audienceDetermining what will be the maximal cable tensions of a cabledriven parallel robot (CDPR) when it moves over a given workspace is an important step in the design phase as it will allow to choose the cable diameter and to provide a requested information for tuning the CDPR actuation. In this paper we consider a suspended N-1 CDPR with n cables where all cables are attached at the same point, which leads to a 3-dof robot. We assume a quasi-static behavior of the robot and assume that the cable are either ideal or elastic so that we neglect the sagging effect. Under these assumption we show that the maximum of the cable tensions may be determined in a very fast way by solving a set of secondorder polynomials which will lead to the poses at which the maximum of each cable tension will occur. For example for a four-cables CDPR determining the maximal cable tension requires to solve at most 149 second order polynomials
    • …
    corecore