1,151 research outputs found

    Low-Complexity LP Decoding of Nonbinary Linear Codes

    Full text link
    Linear Programming (LP) decoding of Low-Density Parity-Check (LDPC) codes has attracted much attention in the research community in the past few years. LP decoding has been derived for binary and nonbinary linear codes. However, the most important problem with LP decoding for both binary and nonbinary linear codes is that the complexity of standard LP solvers such as the simplex algorithm remains prohibitively large for codes of moderate to large block length. To address this problem, two low-complexity LP (LCLP) decoding algorithms for binary linear codes have been proposed by Vontobel and Koetter, henceforth called the basic LCLP decoding algorithm and the subgradient LCLP decoding algorithm. In this paper, we generalize these LCLP decoding algorithms to nonbinary linear codes. The computational complexity per iteration of the proposed nonbinary LCLP decoding algorithms scales linearly with the block length of the code. A modified BCJR algorithm for efficient check-node calculations in the nonbinary basic LCLP decoding algorithm is also proposed, which has complexity linear in the check node degree. Several simulation results are presented for nonbinary LDPC codes defined over Z_4, GF(4), and GF(8) using quaternary phase-shift keying and 8-phase-shift keying, respectively, over the AWGN channel. It is shown that for some group-structured LDPC codes, the error-correcting performance of the nonbinary LCLP decoding algorithms is similar to or better than that of the min-sum decoding algorithm.Comment: To appear in IEEE Transactions on Communications, 201

    Catalyst Acceleration for Gradient-Based Non-Convex Optimization

    Get PDF
    We introduce a generic scheme to solve nonconvex optimization problems using gradient-based algorithms originally designed for minimizing convex functions. Even though these methods may originally require convexity to operate, the proposed approach allows one to use them on weakly convex objectives, which covers a large class of non-convex functions typically appearing in machine learning and signal processing. In general, the scheme is guaranteed to produce a stationary point with a worst-case efficiency typical of first-order methods, and when the objective turns out to be convex, it automatically accelerates in the sense of Nesterov and achieves near-optimal convergence rate in function values. These properties are achieved without assuming any knowledge about the convexity of the objective, by automatically adapting to the unknown weak convexity constant. We conclude the paper by showing promising experimental results obtained by applying our approach to incremental algorithms such as SVRG and SAGA for sparse matrix factorization and for learning neural networks
    • …
    corecore