296 research outputs found

    hp-adaptive discontinuous Galerkin solver for elliptic equations in numerical relativity

    No full text
    A considerable amount of attention has been given to discontinuous Galerkin methods for hyperbolic problems in numerical relativity, showing potential advantages of the methods in dealing with hydrodynamical shocks and other discontinuities. This paper investigates discontinuous Galerkin methods for the solution of elliptic problems in numerical relativity. We present a novel hp-adaptive numerical scheme for curvilinear and non-conforming meshes. It uses a multigrid preconditioner with a Chebyshev or Schwarz smoother to create a very scalable discontinuous Galerkin code on generic domains. The code employs compactification to move the outer boundary near spatial infinity. We explore the properties of the code on some test problems, including one mimicking Neutron stars with phase transitions. We also apply it to construct initial data for two or three black holes

    A monotone multigrid solver for two body contact problems in biomechanics

    Get PDF
    The purpose of the paper is to apply monotone multigrid methods to static and dynamic biomechanical contact problems. In space, a finite element method involving a mortar discretization of the contact conditions is used. In time, a new contact-stabilized Newmark scheme is presented. Numerical experiments for a two body Hertzian contact problem and a biomechanical application are reported
    • …
    corecore