45 research outputs found

    Switch-based Active Deep Dyna-Q: Efficient Adaptive Planning for Task-Completion Dialogue Policy Learning

    Full text link
    Training task-completion dialogue agents with reinforcement learning usually requires a large number of real user experiences. The Dyna-Q algorithm extends Q-learning by integrating a world model, and thus can effectively boost training efficiency using simulated experiences generated by the world model. The effectiveness of Dyna-Q, however, depends on the quality of the world model - or implicitly, the pre-specified ratio of real vs. simulated experiences used for Q-learning. To this end, we extend the recently proposed Deep Dyna-Q (DDQ) framework by integrating a switcher that automatically determines whether to use a real or simulated experience for Q-learning. Furthermore, we explore the use of active learning for improving sample efficiency, by encouraging the world model to generate simulated experiences in the state-action space where the agent has not (fully) explored. Our results show that by combining switcher and active learning, the new framework named as Switch-based Active Deep Dyna-Q (Switch-DDQ), leads to significant improvement over DDQ and Q-learning baselines in both simulation and human evaluations.Comment: 8 pages, 9 figures, AAAI 201

    BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems

    Full text link
    We present a new algorithm that significantly improves the efficiency of exploration for deep Q-learning agents in dialogue systems. Our agents explore via Thompson sampling, drawing Monte Carlo samples from a Bayes-by-Backprop neural network. Our algorithm learns much faster than common exploration strategies such as ϵ\epsilon-greedy, Boltzmann, bootstrapping, and intrinsic-reward-based ones. Additionally, we show that spiking the replay buffer with experiences from just a few successful episodes can make Q-learning feasible when it might otherwise fail.Comment: 13 pages, 9 figure

    Goal-oriented Dialogue Policy Learning from Failures

    Full text link
    Reinforcement learning methods have been used for learning dialogue policies. However, learning an effective dialogue policy frequently requires prohibitively many conversations. This is partly because of the sparse rewards in dialogues, and the very few successful dialogues in early learning phase. Hindsight experience replay (HER) enables learning from failures, but the vanilla HER is inapplicable to dialogue learning due to the implicit goals. In this work, we develop two complex HER methods providing different trade-offs between complexity and performance, and, for the first time, enabled HER-based dialogue policy learning. Experiments using a realistic user simulator show that our HER methods perform better than existing experience replay methods (as applied to deep Q-networks) in learning rate
    corecore