99,166 research outputs found

    Studying complex adaptive systems using molecular classifier systems

    Get PDF
    Complex Adaptive Systems (CAS) are dynamical networks of interacting agents occurring in a variety of natural and artificial systems (e.g. cells, societies, stock markets). These complex systems have the ability to adapt, evolve and learn from experience. To study CAS, Holland proposed to employ agent-based systems in which Learning Classifier Systems (LCS) are used to determine the agents behavior and adaptivity. We argue that LCS are limited for the study of CAS: the rule-discovery mechanism is pre-specified and may limit the evolvability of CAS. Secondly, LCS distinguish a demarcation between messages and rules, however operations are reflexive in CAS, e.g. in a cell, an agent (a molecule) may both act as a message (substrate) and as a catalyst (rule). To address these issues, we proposed the Molecular Classifier Systems (MCS.b), a string-based artificial chemistry based on Hollandā€™s Broadcast Language. In the MCS.b, no explicit fitness function is specified, moreover no distinction is made between messages and rules. In the context of the ESIGNET project, we employ the MCS.b to study a subclass of CAS : Cell Signaling Networks (CSNs) which are complex biochemical networks responsible for coordinating cellular activities. As CSNs occur in cells, these networks must replicate themselves prior to cell division. In this poster we present a series of experiments focusing on the self-replication ability of these CAS

    The Algorithmic Origins of Life

    Full text link
    Although it has been notoriously difficult to pin down precisely what it is that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and in particular, that top-down (or downward) causation -- where higher-levels influence and constrain the dynamics of lower-levels in organizational hierarchies -- may be a major contributor to the hierarchal structure of living systems. Here we propose that the origin of life may correspond to a physical transition associated with a shift in causal structure, where information gains direct, and context-dependent causal efficacy over the matter it is instantiated in. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some potential novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.Comment: 13 pages, 1 tabl

    Artificial life meets computational creativity?

    Get PDF
    I review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity

    A molecular approach to complex adaptive systems

    Get PDF
    Complex Adaptive Systems (CAS) are dynamical networks of interacting agents which as a whole determine the behavior, adaptivity and cognitive ability of the system. CAS are ubiquitous and occur in a variety of natural and artificial systems (e.g., cells, societies, stock markets). To study CAS, Holland proposed to employ an agent-based system in which Learning Classifier Systems (LCS) were used to determine the agents behavior and adaptivity. We argue that LCS are limited for the study of CAS: the rule-discovery mechanism is pre-specified and may limit the evolvability of CAS. Secondly, LCS distinguish a demarcation between messages and rules, however operations are reflexive in CAS, e.g., in a cell, an agent (a molecule) may both act as a message (substrate) and as a catalyst (rule). To address these issues, we proposed the Molecular Classifier Systems (MCS.b), a string-based Artificial Chemistry based on Hollandā€™s broadcast language. In the MCS.b, no explicit fitness function or rule discovery mechanism is specified, moreover no distinction is made between messages and rules. In the context of the ESIGNET project, we employ the MCS.b to study a subclass of CAS: Cell Signaling Networks (CSNs) which are complex biochemical networks responsible for coordinating cellular activities. As CSNs occur in cells, these networks must replicate themselves prior to cell division. In this paper we present a series of experiments focusing on the self-replication ability of these CAS. Results indicate counter intuitive outcomes as opposed to those inferred from the literature. This work highlights the current deficit of a theoretical framework for the study of Artificial Chemistries
    • ā€¦
    corecore