624 research outputs found

    Some regularity and convergence results for parabolic Hamilton-Jacobi-Bellman equations in bounded domains

    Get PDF
    We study the approximation of parabolic Hamilton-Jacobi-Bellman (HJB) equations in bounded domains with strong Dirichlet boundary conditions. We work under the assumption of the existence of a sufficiently regular barrier function for the problem to obtain well-posedness and regularity of a related switching system and the convergence of its components to the HJB equation. In particular, we show existence of a viscosity solution to the switching system by a novel construction of sub- and supersolutions and application of Perron's method. Error bounds for monotone schemes for the HJB equation are then derived from estimates near the boundary, where the standard regularisation procedure for viscosity solutions is not applicable, and are found to be of the same order as known results for the whole space. We deduce error bounds for some common finite difference and truncated semi-Lagrangian schemes

    user's guide to viscosity solutions of second order partial differential equations

    Get PDF
    The notion of viscosity solutions of scalar fully nonlinear partial differential equations of second order provides a framework in which startling comparison and uniqueness theorems, existence theorems, and theorems about continuous dependence may now be proved by very efficient and striking arguments. The range of important applications of these results is enormous. This article is a self-contained exposition of the basic theory of viscosity solutions.Comment: 67 page

    High-order filtered schemes for time-dependent second order HJB equations

    Full text link
    In this paper, we present and analyse a class of "filtered" numerical schemes for second order Hamilton-Jacobi-Bellman equations. Our approach follows the ideas introduced in B.D. Froese and A.M. Oberman, Convergent filtered schemes for the Monge-Amp\`ere partial differential equation, SIAM J. Numer. Anal., 51(1):423--444, 2013, and more recently applied by other authors to stationary or time-dependent first order Hamilton-Jacobi equations. For high order approximation schemes (where "high" stands for greater than one), the inevitable loss of monotonicity prevents the use of the classical theoretical results for convergence to viscosity solutions. The work introduces a suitable local modification of these schemes by "filtering" them with a monotone scheme, such that they can be proven convergent and still show an overall high order behaviour for smooth enough solutions. We give theoretical proofs of these claims and illustrate the behaviour with numerical tests from mathematical finance, focussing also on the use of backward difference formulae (BDF) for constructing the high order schemes.Comment: 27 pages, 16 figures, 4 table
    • …
    corecore