5,068 research outputs found

    What's in a compound? Review article on Lieber and Å tekauer (eds) 2009. 'The Oxford Handbook of Compounding'

    Get PDF
    The Oxford Handbook of Compounding surveys a variety of theoretical and descriptive issues, presenting overviews of compounding in a number of frameworks and sketches of compounding in a number of languages. Much of the book deals with Germanic noun–noun compounding. I take up some of the theoretical questions raised surrounding such constructions, in particular, the notion of attributive modification in noun-headed compounds. I focus on two issues. The first is the semantic relation between the head noun and its nominal modifier. Several authors repeat the argument that there is a small(-ish) fixed number of general semantic relations in noun–noun compounds (‘Lees's solution’), but I argue that the correct way to look at such compounds is what I call ‘Downing's solution’, in which we assume that the relation is specified pragmatically, and hence could be any relation at all. The second issue is the way that adjectives modify nouns inside compounds. Although there are languages in which compounded adjectives modify just as they do in phrases (Chukchee, Arleplog Swedish), in general the adjective has a classifier role and not that of a compositional attributive modifier. Thus, even if an English (or German) adjective–noun compound looks compositional, it isn't

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    CLiFF Notes: Research In Natural Language Processing at the University of Pennsylvania

    Get PDF
    The Computational Linguistics Feedback Forum (CLIFF) is a group of students and faculty who gather once a week to discuss the members\u27 current research. As the word feedback suggests, the group\u27s purpose is the sharing of ideas. The group also promotes interdisciplinary contacts between researchers who share an interest in Cognitive Science. There is no single theme describing the research in Natural Language Processing at Penn. There is work done in CCG, Tree adjoining grammars, intonation, statistical methods, plan inference, instruction understanding, incremental interpretation, language acquisition, syntactic parsing, causal reasoning, free word order languages, ... and many other areas. With this in mind, rather than trying to summarize the varied work currently underway here at Penn, we suggest reading the following abstracts to see how the students and faculty themselves describe their work. Their abstracts illustrate the diversity of interests among the researchers, explain the areas of common interest, and describe some very interesting work in Cognitive Science. This report is a collection of abstracts from both faculty and graduate students in Computer Science, Psychology and Linguistics. We pride ourselves on the close working relations between these groups, as we believe that the communication among the different departments and the ongoing inter-departmental research not only improves the quality of our work, but makes much of that work possible

    A Computational Model of Syntactic Processing: Ambiguity Resolution from Interpretation

    Get PDF
    Syntactic ambiguity abounds in natural language, yet humans have no difficulty coping with it. In fact, the process of ambiguity resolution is almost always unconscious. But it is not infallible, however, as example 1 demonstrates. 1. The horse raced past the barn fell. This sentence is perfectly grammatical, as is evident when it appears in the following context: 2. Two horses were being shown off to a prospective buyer. One was raced past a meadow. and the other was raced past a barn. ... Grammatical yet unprocessable sentences such as 1 are called `garden-path sentences.' Their existence provides an opportunity to investigate the human sentence processing mechanism by studying how and when it fails. The aim of this thesis is to construct a computational model of language understanding which can predict processing difficulty. The data to be modeled are known examples of garden path and non-garden path sentences, and other results from psycholinguistics. It is widely believed that there are two distinct loci of computation in sentence processing: syntactic parsing and semantic interpretation. One longstanding controversy is which of these two modules bears responsibility for the immediate resolution of ambiguity. My claim is that it is the latter, and that the syntactic processing module is a very simple device which blindly and faithfully constructs all possible analyses for the sentence up to the current point of processing. The interpretive module serves as a filter, occasionally discarding certain of these analyses which it deems less appropriate for the ongoing discourse than their competitors. This document is divided into three parts. The first is introductory, and reviews a selection of proposals from the sentence processing literature. The second part explores a body of data which has been adduced in support of a theory of structural preferences --- one that is inconsistent with the present claim. I show how the current proposal can be specified to account for the available data, and moreover to predict where structural preference theories will go wrong. The third part is a theoretical investigation of how well the proposed architecture can be realized using current conceptions of linguistic competence. In it, I present a parsing algorithm and a meaning-based ambiguity resolution method.Comment: 128 pages, LaTeX source compressed and uuencoded, figures separate macros: rotate.sty, lingmacros.sty, psfig.tex. Dissertation, Computer and Information Science Dept., October 199

    Classification-based phrase structure grammar: an extended revised version of HPSG

    Get PDF
    This thesis is concerned with a presentation of Classification -based Phrase Structure Grammar (or cPSG), a grammatical theory that has grown out of extensive revisions of, and extensions to, HPSG. The fundamental difference between this theory and HPSG concerns the central role that classification plays in the grammar: the grammar classifies strings, according to their feature structure descriptions, as being of various types. Apart from the role of classification, the theory bears a close resemblance to HPSG, though it is by no means a direct translation, including numerous revisions and extensions. A central goal in the development of the theory has been its computational implementation, which is included in the thesis.The presentation may be divided into four parts. In the first, chapters 1 and 2, we present the grammatical formalism within which the theory is stated. This consists of a development of the notion of a classificatory system (chapter 1), and the incorporation of hierarchality into that notion (chapter 2).The second part concerns syntactic issues. Chapter 3 revises the HPSG treatment of specifiers, complements and adjuncts, incorporating ideas that specifiers and complements should be distinguished and presenting a treatment of adjuncts whereby the head is selected for by the adjunct. Chapter 4 presents several options for an account of unbounded dependencies. The accounts are based loosely on that of GPSG, and a reconstruction of GPSG's Foot Feature Principle is presented which does not involve a notion of default. Chapter 5 discusses coordination, employing an extension of Rounds- Kasper logic to allow a treatment of cross -categorial coordination.In the third part, chapters 6, 7 and 8, we turn to semantic issues. We begin (Chapter 6) with a discussion of Situation Theory, the background semantic theory, attempting to establish a precise and coherent version of the theory within which to work. Chapter 7 presents the bulk of the treatment of semantics, and can be seen as an extensive revision of the HPSG treatment of semantics. The aim is to provide a semantic treatment which is faithful to the version of Situation Theory presented in Chapter 6. Chapter 8 deals with quantification, discussing the nature of quantification in Situation Theory before presenting a treatment of quantification in CPSG. Some residual questions about the semantics of coordinated noun phrases are also addressed in this chapter.The final part, Chapter 9, concerns the actual computational implementation of the theory. A parsing algorithm based on hierarchical classification is presented, along with four strategies that might be adopted given that algorithm. Also discussed are some implementation details. A concluding chapter summarises the arguments of the thesis and outlines some avenues for future research
    • …
    corecore