57,491 research outputs found

    Data and performance of an active-set truncated Newton method with non-monotone line search for bound-constrained optimization

    Get PDF
    In this data article, we report data and experiments related to the research article entitled “A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization”, by Cristofari et al. (2017). The method proposed in Cristofari et al. (2017), tackles optimization problems with bound constraints by properly combining an active-set estimate with a truncated Newton strategy. Here, we report the detailed numerical experience performed over a commonly used test set, namely CUTEst (Gould et al., 2015). First, the algorithm ASA-BCP proposed in Cristofari et al. (2017) is compared with the related method NMBC (De Santis et al., 2012). Then, a comparison with the renowned methods ALGENCAN (Birgin and Martínez et al., 2002) and LANCELOT B (Gould et al., 2003) is reported

    An Alternating Trust Region Algorithm for Distributed Linearly Constrained Nonlinear Programs, Application to the AC Optimal Power Flow

    Get PDF
    A novel trust region method for solving linearly constrained nonlinear programs is presented. The proposed technique is amenable to a distributed implementation, as its salient ingredient is an alternating projected gradient sweep in place of the Cauchy point computation. It is proven that the algorithm yields a sequence that globally converges to a critical point. As a result of some changes to the standard trust region method, namely a proximal regularisation of the trust region subproblem, it is shown that the local convergence rate is linear with an arbitrarily small ratio. Thus, convergence is locally almost superlinear, under standard regularity assumptions. The proposed method is successfully applied to compute local solutions to alternating current optimal power flow problems in transmission and distribution networks. Moreover, the new mechanism for computing a Cauchy point compares favourably against the standard projected search as for its activity detection properties

    A Descent Method for Equality and Inequality Constrained Multiobjective Optimization Problems

    Full text link
    In this article we propose a descent method for equality and inequality constrained multiobjective optimization problems (MOPs) which generalizes the steepest descent method for unconstrained MOPs by Fliege and Svaiter to constrained problems by using two active set strategies. Under some regularity assumptions on the problem, we show that accumulation points of our descent method satisfy a necessary condition for local Pareto optimality. Finally, we show the typical behavior of our method in a numerical example

    On the Approximation of Constrained Linear Quadratic Regulator Problems and their Application to Model Predictive Control - Supplementary Notes

    Full text link
    By parametrizing input and state trajectories with basis functions different approximations to the constrained linear quadratic regulator problem are obtained. These notes present and discuss technical results that are intended to supplement a corresponding journal article. The results can be applied in a model predictive control context.Comment: 19 pages, 1 figur

    Efficient Heuristic for Resource Allocation in Zero-forcing OFDMA-SDMA Systems with Minimum Rate Constraints

    Full text link
    4G wireless access systems require high spectral efficiency to support the ever increasing number of users and data rates for real time applications. Multi-antenna OFDM-SDMA systems can provide the required high spectral efficiency and dynamic usage of the channel, but the resource allocation process becomes extremely complex because of the augmented degrees of freedom. In this paper, we propose two heuristics to solve the resource allocation problem that have very low computational complexity and give performances not far from the optimal. The proposed heuristics select a set of users for each subchannel, but contrary to the reported methods that solve the throughput maximization problem, our heuristics consider the set of real-time (RT) users to ensure that their minimum rate requirements are met. We compare the heuristics' performance against an upper bound and other methods proposed in the literature and find that they give a somewhat lower performance, but support a wider range of minimum rates while reducing the computational complexity. The gap between the objective achieved by the heuristics and the upper bound is not large. In our experiments this gap is 10.7% averaging over all performed numerical evaluations for all system configurations. The increase in the range of the supported minimum rates when compared with a method reported in the literature is 14.6% on average.Comment: 8 figure

    Climbing depth-bounded adjacent discrepancy search for solving hybrid flow shop scheduling problems with multiprocessor tasks

    Full text link
    This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The problem even in its simplest form is NP-hard in the strong sense. The great deal of interest for this problem, besides its theoretical complexity, is animated by needs of various manufacturing and computing systems. We propose a new approach based on limited discrepancy search to solve the problem. Our method is tested with reference to a proposed lower bound as well as the best-known solutions in literature. Computational results show that the developed approach is efficient in particular for large-size problems
    corecore