150 research outputs found

    Two-field finite element solver for linear poroelasticity, A

    Get PDF
    Includes bibliographical references.2020 Summer.Poroelasticity models the interaction between an elastic porous medium and the fluid flowing in it. It has wide applications in biomechanics, geophysics, and soil mechanics. Due to difficulties of deriving analytical solutions for the poroelasticity equation system, finite element methods are powerful tools for obtaining numerical solutions. In this dissertation, we develop a two-field finite element solver for poroelasticity. The Darcy flow is discretized by a lowest order weak Galerkin (WG) finite element method for fluid pressure. The linear elasticity is discretized by enriched Lagrangian (EQ1EQ_1) elements for solid displacement. First order backward Euler time discretization is implemented to solve the coupled time-dependent system on quadrilateral meshes. This poroelasticity solver has some attractive features. There is no stabilization added to the system and it is free of Poisson locking and pressure oscillations. Poroelasticity locking is avoided through an appropriate coupling of finite element spaces for the displacement and pressure. In the equation governing the flow in pores, the dilation is calculated by taking the average over the element so that the dilation and the pressure are both approximated by constants. A rigorous error estimate is presented to show that our method has optimal convergence rates for the displacement and the fluid flow. Numerical experiments are presented to illustrate theoretical results. The implementation of this poroelasticity solver in deal.II couples the Darcy solver and the linear elasticity solver. We present the implementation of the Darcy solver and review the linear elasticity solver. Possible directions for future work are discussed

    Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics

    Get PDF
    We present a hybrid mimetic finite-difference and virtual element formulation for coupled single-phase poromechanics on unstructured meshes. The key advantage of the scheme is that it is convergent on complex meshes containing highly distorted cells with arbitrary shapes. We use a local pressure-jump stabilization method based on unstructured macro-elements to prevent the development of spurious pressure modes in incompressible problems approaching undrained conditions. A scalable linear solution strategy is obtained using a block-triangular preconditioner designed specifically for the saddle-point systems arising from the proposed discretization. The accuracy and efficiency of our approach are demonstrated numerically on two-dimensional benchmark problems.Comment: 25 pages, 17 figure

    Linear Thermo-Poroelasticity and Geomechanics

    Get PDF
    Most engineering applications estimate the deformation induced by loads by using the linear elasticity theory. The discretization process starts with the equilibrium equation and then develops a displacement formulation that employs the Hooke’s law. Problems of practical interest encompass designing of large structures, buildings, subsurface deformation, etc. These applications require determining stresses to compare them with a given failure criteria. One often tackles this way a design or material strength type of problems. For instance, Geomechanics applications in the oil and gas industry assess the induced stresses changes that hydrocarbon production or the injection of fluids, i.e., artificial lift, in a reservoir produce in the surrounding rock mass. These studies often include reservoir compaction and subsidence that pose harmful and costly effects such as in wells casing, cap-rock stability, faults reactivation, and environmental issues as well. Estimating these stress-induced changes and their consequences require accurate elasticity simulations that are usually carried out through finite element (FE) simulations. Geomechanics implies that the flow in porous media simulation must be coupled with mechanics, which causes a substantial increase in CPU time and memory requirements

    Weak Galerkin finite element methods for elasticity and coupled flow problems

    Get PDF
    Includes bibliographical references.2020 Summer.We present novel stabilizer-free weak Galerkin finite element methods for linear elasticity and coupled Stokes-Darcy flow with a comprehensive treatment of theoretical results and the numerical methods for each. Weak Galerkin finite element methods take a discontinuous approximation space and bind degrees of freedom together through the discrete weak gradient, which involves solving a small symmetric positive-definite linear system on every element of the mesh. We introduce notation and analysis using a general framework that highlights properties that unify many existing weak Galerkin methods. This framework makes analysis for the methods much more straightforward. The method for linear elasticity on quadrilateral and hexahedral meshes uses piecewise constant vectors to approximate the displacement on each cell, and it uses the Raviart-Thomas space for the discrete weak gradient. We use the Schur complement to simplify the solution of the global linear system and increase computational efficiency further. We prove first-order convergence in the L2 norm, verify our analysis with numerical experiments, and compare to another weak Galerkin approach for this problem. The method for coupled Stokes-Darcy flow uses an extensible multinumerics approach on quadrilateral meshes. The Darcy flow discretization uses a weak Galerkin finite element method with piecewise constants approximating pressure and the Arbogast-Correa space for the weak gradient. The Stokes domain discretization uses the classical Bernardi-Raugel pair. We prove first-order convergence in the energy norm and verify our analysis with numerical experiments. All algorithms implemented in this dissertation are publicly available as part of James Liu's DarcyLite and Darcy+ packages and as part of the deal.II library
    • …
    corecore