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Abstract

We present a hybrid mimetic finite-difference and virtual element formulation for coupled single-phase poromechanics on
nstructured meshes. The key advantage of the scheme is that it is convergent on complex meshes containing highly distorted
ells with arbitrary shapes. We use a local pressure-jump stabilization method based on unstructured macro-elements to prevent
he development of spurious pressure modes in incompressible problems approaching undrained conditions. A scalable linear
olution strategy is obtained using a block-triangular preconditioner designed specifically for the saddle-point systems arising
rom the proposed discretization. The accuracy and efficiency of our approach are demonstrated numerically on two-dimensional
enchmark problems.
c 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Poroelasticity; Mimetic finite-difference; Virtual element method; Arbitrary polygonal meshes

1. Introduction

Modeling hydro-mechanical coupling is essential to accurately simulate a wide range of subsurface processes
nvolving fluid flow and mechanical deformation, such as oil and gas recovery [1], geological CO2 storage [2],

and geothermal energy production [3]. In life sciences, this coupling also plays a central role in the modeling of
bone deformation [4] and blood-vessel interaction in hemodynamics [5]. Studies involving the numerical solution
of Biot’s equations of poroelasticity on a computational mesh are routinely used to investigate these processes. In
most subsurface applications, generating a mesh that faithfully represents the structure of the porous medium is
a difficult task. Geological formations often exhibit a high heterogeneity characterized by stratigraphic layering
and the presence of faults and fractures. As a result, there is strong interest in using unstructured polyhedral
meshes that conform to the complex geological features of the porous medium [6]. To preserve accuracy and reduce
computational cost, it is appealing to solve both the porous flow problem and the mechanical problem on the same
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mesh. In this work, we address this issue by developing a robust numerical scheme and fully coupled solution
strategy for the displacement–velocity–pressure formulation of Biot’s equations on arbitrary polyhedral meshes.

In recent years, considerable efforts have been invested in the development of stable and convergent numerical
chemes for general second-order elliptic problems on polyhedral meshes [7–10]. In poromechanical simulations,
he mechanical problem has traditionally been solved with the Finite-Element Method (FEM). To overcome
he mesh restrictions imposed by the standard FEM and handle arbitrary cell shapes, generalized finite-element
iscretizations have been proposed for polyhedral meshes, such as the polyhedral finite-element method (see [11]
nd references therein). For completeness, we mention here that discontinuous Galerkin methods, hybrid high-order
ethods [12], and finite-volume approaches [13,14] have also been designed to solve the mechanical component

f Biot’s equations on polyhedral meshes. Recently, using concepts inspired by Mimetic Finite Difference (MFD)
ethods, the introduction of the Virtual Element Method (VEM) provided a variational framework to construct a

onsistent and stable scheme on arbitrary polyhedral meshes [8,15]. An attractive feature that distinguishes VEM
rom other generalized FEMs is that the assembly of the VEM discrete equations does not require knowledge of
he analytical expression of the (non-polynomial) basis functions, which allows a generic and robust treatment of
omplex cell geometries. For the same reason, hanging nodes can be dealt with in a simple and convenient fashion.
he scheme’s properties have been studied extensively [16–20], and have been assessed numerically in a wide

ange of physical simulations, including geomechanical applications [21–24]. In this work, we take advantage of
he appealing features discussed above, using a low-order VEM relying on vertex-based degrees of freedom (dofs)
o approximate displacements in the discrete mechanical problem.

For the flow problem, a large number of numerical schemes for polyhedral meshes have been proposed [25],
nd a complete review is out of the scope of the present work. We focus here on locally conservative, low-order,
inear schemes. Pioneering linear finite-volume approaches have relied on a cell-centered discretization, such as

ulti-Point Flux Approximation (MPFA) schemes [26,27]. However, linear schemes combining cell-centered dofs
ith face-centered dofs – such as the family of Hybrid Mimetic Mixed (HMM) methods [28–30] – or with vertex-
ased dofs – such as the Vertex Approximate Gradient (VAG) scheme [31] – have been shown to be convergent
n polyhedral meshes. A recent numerical comparison of some of these schemes with nonlinear methods can be
ound in [32], and a general analysis framework is provided by [10,33].

The present work is the first step in the design of a mass conservative, low-order scheme for poromechanics that
emains convergent and robust on complex field-scale meshes – either fully unstructured or corner-point – containing
rbitrary shaped elements with curved interfaces. We select VEM for the mechanical problem for its flexibility in
ealing with polytopal meshes without having to compute the basis functions explicitly. On the other hand, for
he flow problem we choose a hybrid MFD discretization that approximates pressure with cell-centered dofs and
elocity with face-centered dofs. This choice is motivated by the fact that this scheme provides a robust, mass
onservative discretization whose implementation has many similarities with the Finite-Volume Method (FVM) —
he mass-conservative scheme historically favored in reservoir simulation studies [34]. In the hybrid formulation,
he MFD scheme also involves face-based Lagrange multipliers, which allows a cell-wise assembly of the discrete
ow equations. Static condensation is used to eliminate the velocities during assembly and reduce the size of

he linear systems. After static condensation, the inverse of the MFD inner product matrix can be viewed as a
ransmissibility matrix, yielding a flux assembly that proceeds as in FVM. This coupling has not been studied
efore in a poromechanical context to the best of our knowledge.

The proposed hybrid MFD-VEM numerical scheme uses the lowest order Virtual Element space for the
isplacement field and a piecewise-constant interpolation for pressure. This combination of displacement and
ressure approximation spaces does not intrinsically satisfy the Ladyzhenskaya–Babuška–Brezzi (LBB) inf–sup

stability condition [35,36]. For incompressible problems approaching undrained conditions, this results in the
development of spurious modes in the pressure field for specific mesh topologies [37]. To circumvent this issue,
the scheme is stabilized using a local pressure-jump method inspired by [38,39] and adapted here to unstructured
meshes. We design a fully implicit, fully coupled solution strategy for the stabilized discretization. The workhorse
of the algorithm is a block-triangular preconditioner constructed specifically for the linear systems arising from
the hybrid MFD-VEM scheme using a methodology presented in [39]. Using this, we demonstrate three key
features of our numerical framework applied to arbitrary polygonal meshes with highly distorted cells. First, the
scheme is convergent upon space–time refinement and matches the analytical solution of the well-known benchmark

problems [40]. Second, the scheme exhibits an accurate behavior for incompressible problems with small time steps.

2
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We note in particular that no stabilization is needed on a large class of arbitrary polygonal meshes [41], and that
local stabilization effectively damps spurious pressure modes on those meshes triggering the instability. Third, the
linear solution strategy is robust and scalable for all the polygonal meshes considered here. These encouraging
results will be extended to three-dimensional cases in future work.

This paper is organized as follows. We review the strong and weak forms of Biot’s poroelasticity equations in
ection 2. In Section 3, we introduce the hybrid MFD-VEM scheme to solve the initial boundary value problem.
e also introduce the local pressure-jump method used to stabilize the scheme. Section 3.6 is dedicated to the

resentation of the linear solution algorithm for the coupled systems. In Section 4, we demonstrate the accuracy
f the proposed numerical scheme on polygonal meshes and we illustrate the scalability of the solution algorithm.
he paper ends with a few concluding remarks regarding future work.

. Model problem

.1. Initial–boundary value problem in strong form

We consider a displacement–velocity–pressure formulation of Biot’s poroelasticity equations [42–57] in a two-
imensional domain Ω ∈ R2. Let I = (0, T ) denote the time interval. The three-field strong form of the
nitial–boundary value problem (IBVP) consists of a linear momentum balance equation, a mass balance equation,
nd Darcy’s law. Using an excess pressure formulation, the displacement u : Ω × I → R2, the Darcy velocity

q : Ω × I → R2, and the excess pore pressure p : Ω × I → R satisfy:

−div σ (u, p) = b in Ω × I (momentum balance), (1a)

κ−1
· q + ∇ p = 0 in Ω × I (Darcy’s law), (1b)

ζ̇ (u, p) + div q = 0 in Ω × I (mass balance). (1c)

n the momentum balance equation, the total Cauchy stress tensor is σ (u, p) = σ ′(u) − αp I , where σ ′(u) is the
ffective stress tensor, α is Biot’s coefficient, and I is the second-order unit tensor. In this work, we consider
sotropic linear elastic materials. Hence, the effective stress can be defined as σ ′(u) = 2Gε(u) +λ trace(ε(u)), with
(u) =

1
2 (∇u + ∇uT ) the linearized strain tensor, and λ and G the Lamé parameters of the porous medium. The

vector b(x, t) denotes body forces. In Darcy’s law, κ denotes the intrinsic permeability tensor of the porous medium
divided by the fluid viscosity, which is assumed constant. Using the superposed dot, (̇), to denote a derivative with
respect to time, the fluid increment [42] is defined as ζ̇ (u, p) = α div u̇ + Sε ṗ, where Sε is the constrained specific
storage coefficient, i.e. the inverse of Biot’s modulus.

To define the boundary conditions in the mechanical and flow problems, the domain boundary Γ is decomposed
as Γ = Γu ∪ Γσ and Γ = Γp ∪ Γq such that Γu ∩ Γσ = ∅ and Γp ∩ Γq = ∅. We prescribe the following boundary
onditions to, respectively, the displacement, total Cauchy stress tensor, Darcy velocity, and excess pore pressure
elds:

u = u on Γu × I, (2a)

σ · n = t on Γσ × I, (2b)

q · n = q on Γq × I, (2c)

p = p on Γp × I, (2d)

here the (space- and time-dependent) boundary values on the right-hand sides are denoted by the notation (·). In
(2b), t is the prescribed traction, and n is the outward normal vector on Γ .

To complete the definition of the problem, we impose the following initial condition on the excess pore pressure
field:

p(x, 0) = p0, x ∈ Ω , (3)

with p0 its initial value. Frequently, though not always, p0
= 0. The initial displacement u0 and velocity q0 are

then computed such that Eqs. (1a) and (1b), respectively, are satisfied.
3
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2.2. Weak statement of the model problem

In the weak statement of the model problem, we retain a mixed structure in which mass balance and Darcy’s
aw are kept as separate equations. This mixed formulation will be used in Section 3.2 to construct a consistent
iscretization of the flow problem based on a hybrid MFD scheme. The weak form of the IBVP (1) involves the
ollowing spaces:

U = {u ∈ H1(Ω ) : u|Γu = u}, U0 = {u ∈ H1(Ω ) : u|Γu = 0}, (4a)

Q = {q ∈ H(div;Ω ) : q · n|Γq = q}, Q0 = {q ∈ H(div;Ω ) : q · n|Γq = 0}, (4b)

P = L2(Ω ), (4c)

here H1(Ω ) and H(div;Ω ) are the Sobolev spaces containing, respectively, the vector functions whose first
erivatives belong to L2(Ω ), and the vector functions whose divergence is in L2(Ω ). Using the notation (·, ·)□
o denote the inner product on the functional space specified in the subscript, the weak form of the mixed IBVP
1) consists in finding the triplet (u(t), q(t), p(t)) ∈ U × Q × P that, for all t ∈ I, satisfies:

(σ ′, ε(η))[L2(Ω)]2×2 − (αp, div η)L2(Ω) = (b, η)[L2(Ω)]2 + (t, η)[L2(Γσ )]2 ∀η ∈ U0, (5a)

(κ−1
· q, ϕ)[L2(Ω)]2 − (p, div ϕ)L2(Ω) = −(p, ϕ · n)L2(Γp) ∀ϕ ∈ Q0, (5b)

(α div u̇, χ)L2(Ω) + (div q, χ)L2(Ω) + (Sε ṗ, χ)L2(Ω) = 0 ∀χ ∈ L2(Ω ). (5c)

detailed analysis of this problem can be found in [45]. In the next section, we discretize the weak form (5) on
rbitrary polygonal meshes by applying a low-order VEM to the momentum balance equation and a hybrid MFD
cheme to the mass balance and Darcy’s law.

. Numerical model

.1. Polygonal meshes

To describe the arbitrary polygonal meshes considered in this work, we rely on a mesh structure consisting of
he triplet {T ,F ,V} (see also [13,58]). In this triplet, T denotes the set of non-overlapping open polygonal cells
n the mesh such that Ω = ∪K∈T K . Let ∂K = K \ K be the boundary of cell K ∈ T . The second entry in the

triplet, F , is the set of mesh faces corresponding, in the two-dimensional case considered here, to one-dimensional
hyperplanes of R2. The set of mesh faces is decomposed into three non-intersecting subsets F = Fint ∪ Fp ∪ Fq ,
containing respectively the interior faces, the boundary faces located on Γp, and the boundary faces located on
Γq . For all K ∈ T , FK is a subset that contains the faces of cell K such that ∂K = ∪ f ∈FK f . Denoting by
T f = {K ∈ T : f ∈ FK } the subset consisting of the cell(s) adjacent to interface f , we require that the mesh is
conforming in the sense that card(T f ) = 2 if f ∈ Fint and card(T f ) = 1 otherwise. The third entry of the triplet,
V , is the set of mesh vertices. The subset of the vertices of cell K is VK , and the subset of the vertices of face f
is V f .

The notation | · | refers to the d-measure of a d-dimensional quantity (cell or face). We denote the positions
of the center of cell K , the center of face f , and the vertex v by xK , x f , and xv , respectively (see Fig. 1). The
geometrical computations in the next sections involve the outward normal to face f ∈ TK with respect to cell
K , denoted by nK , f , and the vector connecting xK to x f ( f ∈ FK ), denoted by cK , f (see Fig. 1). Using these
notations, a mesh satisfies the κ-orthogonality condition [25] if:

κ · nK , f ∥ cK , f ∀ f ∈ FK , ∀K ∈ T . (6)

We make the regularity assumption that there exists γ > 0 such that for all K ∈ T , K is star-shaped with respect
to a ball of radius larger than γ hK , where hK is the cell diameter.

Fig. 2 illustrates the different types of meshes considered in our numerical examples. They include skewed
meshes (Skewed) obtained by perturbing the vertices of a uniform Cartesian mesh (Cartesian) using the function:

g(x, y) =

⎛⎜⎝x + 0.075 sin (4πx) cos
(

4πy +
π

2

)
y + 0.075 sin (4πx) cos

(
4πy +

π )
⎞⎟⎠ . (7)
2
4
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Fig. 1. Mesh attributes.

Fig. 2. Representative meshes used in the numerical tests, with their respective tags.

Table 1
Number of non-convex cells in Skewed meshes.

Total number of cells 9 36 144 576 2304 9216
Number of non-convex cells 0 12 16 80 112 48

The test suite also involves hybrid meshes (Hybrid) composed of triangles and quadrilaterals generated with
MSH [59], and arbitrary polygonal meshes (Polymesher1 and Polymesher20) generated with respectively
ne and 20 smoothing steps of Polymesher [60]. We stress the fact that the meshes of types Skewed, Hybrid,
olymesher1, and Polymesher20 do not satisfy, in general, the κ-orthogonality condition (6).

emark 1. The meshes of type Skewed contain non-convex star-shaped polygons. In Table 1 we report the number
f non-convex cells and the total number of cells of the Skewed meshes used in the numerical tests in Section 4.

.2. Fully discrete coupled scheme

In this section, we present the system of algebraic equations arising from a hybrid MFD-VEM discretization of
he weak form (5). To simplify the presentation, we will momentarily delay the description of the construction of
ertain VEM and MFD operators, to first describe the overall form of the discrete equations. A subsequent section
ill then revisit these important but subsidiary elements in detail.
To discretize the momentum balance equation (5a), we consider a low-order VEM in which the displacement

eld is approximated in the following functional spaces:

U h = {uh ∈ C0(Ω ) × C0(Ω ) : uh|Γu = u, uh |K ∈ Uh,K × Uh,K , ∀K ∈ T }, (8a)
0 0
U h,0 = {uh ∈ C (Ω ) × C (Ω ) : uh|Γu = 0, uh |K ∈ Uh,K × Uh,K , ∀K ∈ T }. (8b)

5
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The local space U h,K is “virtual” in the sense that the analytical expression of its basis functions is not known and
ot needed for the construction of the scheme. For the low-order VEM, a function of U h,K is uniquely defined by

its values at the vertices of K . These vertex-based values are, for each component of the displacement, the dofs of
he VEM. The VEM methodology provides two key operators acting on the displacement dofs: a coercive bilinear
orm ah(·, ·) : U h × U h → R approximating the [L2(Ω )]2×2-inner product of Eq. (5a), and a discrete divergence
perator discretizing the divergence term appearing in the L2(Ω )-inner product of Eq. (5a). We denote this VEM
ivergence operator by divVEM

h : U h → Ph , where Ph is:

Ph = {ph ∈ L2(Ω ) : ph|K ∈ P0(K ), ∀K ∈ T }. (9)

he definition of the local virtual space U h,K as well as the construction of the VEM operators ah(·, ·) and divVEM
h are

eviewed in Section 3.3. The right-hand side of (5a) involving body forces is computed by defining, for each K ∈ T ,
b̃K =

1
|K |

∫
K b (where the integral of a vector is intended to be performed component-wise) and approximating the

local right-hand side as follows:

(b, ηh)[L2(K )]2 ≈ (b̃K , η̃h,K )[L2(K )]2 = |K | b̃K · η̃h,K ∀ηh ∈ U h , where η̃h,K =
1

|K |

∫
K

ηh . (10)

In the low-order MFD scheme, we adopt a purely discrete representation of the solution fields for the velocity,
pressure, and Lagrange multiplier variables. To represent the Darcy velocity field, we denote by Wh the set of one-
sided face-based discrete fields. In the hybrid formulation, a discrete field wh = (wK , f )K∈T , f ∈FK ∈ Wh contains

ne dof per boundary face, and two dofs per interior face that are not necessarily equal. Each dof approximates the
verage Darcy velocity over a face such that

wK , f ≈
1

| f |

∫
f

q · nK , f , ∀ f ∈ FK , ∀K ∈ T . (11)

o discretize the weak form of the Darcy equation (5b), the MFD scheme involves a discrete weighted inner product
·, ·]Wh : Wh × Wh → R used to approximate the [L2(Ω )]2-inner product of Eq. (5b). For the discretization of
he divergence term present in the L2(Ω )-inner product of Eq. (5b), we also define a discrete divergence operator,
ivMFD

h : Wh → Ph , where the set of cell-based discrete fields, Ph , is isomorphic to the space of piecewise constant
unctions, Ph . The construction of these two MFD operators is detailed in Section 3.4.

The pressure field is represented as a cell-based discrete field of Ph . A discrete pressure solution ph =

pK )K∈T ∈ Ph is a collection of dofs approximating the cell-based pressure averages, i.e.,

pK ≈
1

|K |

∫
K

p, ∀K ∈ T . (12)

quivalently, the pressure solution can be viewed as a piecewise-constant function of Ph using the decomposition
ph(x) = (IPh ph)(x) =

∑
K∈T pK χK (x), where IPh : Ph → Ph is the interpolation operator and (χK )K∈T is the

anonical basis of Ph . The discrete counterpart of the L2(Ω )-inner product is [·, ·]Ph : Ph × Ph → R, classically
efined as the sum of local inner products:

[ph, χh]Ph =

∑
K∈T

[ph|K , χh|K ]Ph|K =

∑
K∈T

|K |pK χK . (13)

In the hybrid formulation, the computation of the Darcy velocity involves Lagrange multipliers that are
epresented as a face-based discrete field. We remark that, considering the set of face-based discrete fields, Lh ,
he field πh = (π f ) f ∈F ∈ Lh contains one dof per face that can be viewed as an approximation of the face
ressure average, i.e.,

π f ≈
1

| f |

∫
f

p, ∀ f ∈ F . (14)

he subset Lh,0 contains the discrete fields πh = (π f ) f satisfying π f = 0 for f ∈ Fp.
We consider a fully implicit (backward-Euler) temporal discretization of the coupled system. The superscript
denotes the time level at which the degrees of freedom are evaluated. Using the notations introduced above,

he coupled problem in discrete weak form reads: given two functions {u0, p0
} defining the initial state, find the
6
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h ∈ U h and the discrete fields {wn

h, pn
h, π

n
h} ∈ Wh × Ph × Lh such that for n ∈ {1, . . . , N }:

ah(un
h, ηh) − (α IPh pn

h, divVEM
h ηh)L2(Ω) =

∑
K∈T

|K | b̃K · η̃h,K + (t, ηh)[L2(Γσ )]2 , ∀ηh ∈ U h,0, (15a)

[wn
h, ϕh]Wh − [pn

h, divMFD
h ϕh]Ph +

∑
K∈T

∑
f ∈F

| f |πn
f ϕK , f = 0, ∀ϕh ∈ Wh, (15b)

(α divVEM
h un

h, IPh χh)L2(Ω) + ∆t [divMFD
h wn

h, χh]Ph + [Sεpn
h, χh]Ph = sn−1

h , ∀χh ∈ Ph, (15c)

−

∑
K∈T

∑
f ∈FK

| f |wn
K , f λ f = −

∑
f ∈Fq

| f |qλ f , ∀λh ∈ Lh,0, (15d)

here the right-hand side of (15c) is:

sn−1
h = (α divVEM

h un−1
h , IPh χh)L2(Ω) + [Sεpn−1

h , χh]Ph . (16)

n the hybridized system (15), the use of Lagrange multipliers allows a local, cell-wise computation of the one-sided
ace velocities in the discrete Darcy equation (15b). To ensure that the hybrid scheme remains mass conservative,
he set of algebraic constraints (15d) imposes the continuity of the velocities at the mesh faces. We stress the fact
hat, despite a relatively large number of dofs, the hybridized system is amenable to static condensation, which is
sed to locally eliminate the one-sided face velocities during the assembly. The resulting algebraic system solved
y the linear solver is discussed in Section 3.6.

In the following sections, we focus on the terms of (15) that have not been fully defined yet. In Section 3.3, we
efine the virtual space U h and review the construction of the VEM operators ah(·, ·) and divVEM

h . In Section 3.4,
e show that a similar methodology is used in MFD to form the operators [·, ·]Wh and divMFD

h . For simplicity, we
rop the superscript n denoting the time level.

.3. Local virtual space and VEM operators

We start the section with the local virtual space introduced in the low-order VEM [8,15] to approximate the
isplacement variable. Let K ∈ T be a polygon of the tessellation of Ω . Following [15], we define the following
et of scaled monomials on K :

M1 (K ) =

{
m1(x) = 1, m2(x) =

x − xK

hK
, m3(x) =

y − yK

hK

}
, (17)

where we recall that xK = (xK , yK ) is the center of K and hK is the diameter of K . We define the projection
perator Π ∇,K

1 : H 1 (K ) → P1 (K ) such that, ∀η ∈ H 1 (K ),⎧⎪⎪⎨⎪⎪⎩
∫

K
∇Π ∇,K

1 η · ∇m =

∫
K

∇η · ∇m, ∀m ∈ M1 (K ) ,∫
∂K

Π ∇,K
1 η =

∫
∂K

η .

(18)

Then, we define the following functional space:

Uh,K =

{
η ∈ H 1 (K ) : ∆η ∈ P1 (K ) , η ∈ C0 (∂K ) , η| f ∈ P1 ( f ) ∀ f ∈ FK ,∫
K

η · m =

∫
K
Π ∇,K

1 η · m ∀m ∈ M1 (K )

}
, (19)

where P1 (K ) is the set of polynomials of degree ≤ 1 defined on K , and P1 ( f ) the set of polynomials of degree
≤ 1 defined on the face f .

A function ηh ∈ Uh,K is completely defined by its values at the vertices of K [8]. Functions in Uh,K are called
“virtual” because their analytical expressions are not known. Instead, we know that they are polynomials of degree
≤ 1 on each edge. For each ηh ∈ Uh,K , its projection Π ∇,K

1 ηh is computable from the degrees of freedom. Indeed,

the right-hand sides of (18) can be computed knowing only the analytical expression of ηh on ∂K . In particular,

7
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the first right-hand side is computed by integrating by parts and applying Green’s theorem. Exploiting the fact that
∆m = 0 ∀m ∈ P1 (K ), we get∫

K
∇ηh · ∇m =

∫
∂K

ηh ·
∂m
∂n

. (20)

he last condition on the functions in Uh,K (see Eq. (19)) allows us to compute the integral mean of ηh on K .
ndeed,

η̃h,K :=
1

|K |

∫
K

ηh =
1

|K |

∫
K
Π ∇,K

1 ηh . (21)

Finally, the integral mean of the gradient of ηh on K is also computable knowing only the analytical expression of
h on ∂K :

∂̃x,K ηh :=
1

|K |

∫
K

∂ηh

∂x
= −

1
|K |

∫
∂K

ηhnx , ∂̃y,K ηh :=
1

|K |

∫
K

∂ηh

∂y
= −

1
|K |

∫
∂K

ηhny . (22)

We denote ∇̃K ηh :=

(̃
∂x,K ηh

∂̃y,K ηh

)
. We use the same notation in the following for vectorial and tensorial functions,

where integral means are performed on each component.
With reference to the notation introduced in Section 3.2, we discretize the displacement un

h defining the space

U h = {ηh ∈ C0(Ω ) × C0(Ω ) : ηh |K ∈ Uh,K × Uh,K , ∀K ∈ T }. (23)

Furthermore, the discrete bilinear form of the problem is obtained by first defining the following discretizations of

the strains and effective stresses, for each K ∈ T and each ηh =

(
ηh,x

ηh,y

)
∈ U h :

ε̃K
(
ηh
)

=
1

|K |

∫
K

ε
(
ηh
)

=
1
2

(
∇̃K ηh +

(
∇̃K ηh

)⊺)
, (24)

σ̃ ′

K

(
ηh
)

= 2Gε̃K
(
ηh
)
+ λtrace

(̃
εK
(
ηh
))

, (25)

here ∇̃K ηh =

((
∇̃K ηh,x

)⊺(
∇̃K ηh,y

)⊺). Moreover, we define the discrete VEM divergence operator divVEM
h : U h → Ph as

divVEM
h ηh = trace

(
∇̃K ηh

)
, ∀ηh ∈ U h, (26)

hat is used in (15a) and (16).
To complete the definition of VEM discrete bilinear forms, following [15], we define, for each K ∈ T , the

ontinuous and coercive bilinear form aK
h : U h × U h → R such that

aK
h

(
uh, ηh

)
=

∫
K

σ̃ ′

K (uh) : ε̃K
(
ηh
)
+

(
2 sup

K
G
)

SK
h

(
uh − Π ∇,K

1 uh, ηh − Π ∇,K
1 ηh

)
, ∀uh, ηh ∈ U h . (27)

he bilinear form SK
h is defined in order to be computable from the degrees of freedom of the two functions involved

nd to ensure the coercivity of aK
h . The most common choice, and the one we make here, is

SK
h

(
uh − Π ∇,K

1 uh, ηh − Π ∇,K
1 ηh

)
=

∑
v∈VK

(
uh(xv) − Π ∇,K

1 (uh) (xv)
) (

ηh(xv) − Π ∇,K
1

(
ηh
)

(xv)
)

, (28)

where we recall that VK denotes the set of the vertices of K . With the above definitions, we can build the discrete
VEM bilinear form, that is used in (15a), as

ah

(
uh, ηh

)
=

∑
K∈T

aK
h

(
uh, ηh

)
, ∀uh, ηh ∈ U h . (29)

Moreover, Eq. (21) applied to each component of a test function ηh ∈ U h , allows us to compute the approximation
of the right-hand side term involving the body force as described in (10). Finally, we note that, since the VEM
basis functions are known to be polynomials on faces, we can compute the right-hand side of (15a) involving t as
we would do for a classical finite element discretization.
8
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Remark 2. The bilinear form aK
h defined by (27) is composed of two terms: the first one (first addend in

(27)) accounts for the consistency of the scheme on polynomials of degree 1, the second one (second addend
in (27), defined by (28)) accounts for coercivity. Indeed, whenever either ηh ∈ [P1(K )]2 or uh ∈ [P1(K )]2,
SK

h

(
uh − Π ∇,K

1 uh, ηh − Π ∇,K
1 ηh

)
= 0, since the operator Π ∇,K

1 is the identity for polynomials of degree 1.
Moreover, since the operators σ̃ ′

K and ε̃K are consistent on polynomials of degree 1 (see (24) and (25)), we have
that aK

h is exact on [P1(K )]2
× [P1(K )]2. The same structure can be observed for the MFD bilinear form [· , ·]Wh ,

hat is described in Section 3.4 (see (33)).

.4. MFD operators

In this section, we focus on the two key discrete MFD operators – namely, the divergence operator and the
eighted inner product – acting on the set of one-sided face-based fields Wh that appear in the discrete Darcy and
ass balance equations (15b)–(15c). Let wh , qh ∈ Wh be two discrete fields representing one-sided face velocities.
he discrete divergence operator, divh,M F D : Wh → Ph , is defined by:

divMFD
h wh =

(
1

|K |

∑
f ∈FK

| f |wK , f

)
K∈T

∈ Ph . (30)

he weighted inner product [·, ·]Wh : Wh × Wh → R is written as the sum of local inner products:

[wh, qh]Wh =

∑
K∈T

[wh|K , qh|K ]Wh|K =

∑
K∈T

∑
f ∈FK

∑
f ′∈FK

(MK ) f f ′wK , f qK , f . (31)

he mimetic discretization framework provides a methodology to construct a symmetric positive definite matrix of
ize card(FK ) × card(FK ), denoted by MK , that only depends on the permeability and geometric properties of cell

K . As in Section 3.3, an expression for MK is obtained by imposing consecutively a consistency condition and a
tability condition [7], which can then be used to demonstrate that the scheme is convergent for elliptic problems
n mixed form [61].

For a low-order mimetic finite-difference scheme, the consistency condition states that the local inner product
·, ·]Wh|K must be exact when one of the two arguments is the projection on Wh|K of a constant function κ |K · ∇q
ith q ∈ P1(K ). Setting q to q1(x) = x − xK and q2(x) = y − yK in the consistency condition results in the

ollowing algebraic constraint on the entries of MK [7]:

MK NK = RK . (32)

et fi denote the i th face in FK . By construction, NK and RK are two full-rank matrices of size card(FK ) × 2
uch that the i th row of NK is n⊺

K , fi
κ , and the i th row of RK is | fi |c

⊺
K , fi

. Condition (32) defines a family of
consistent low-order mimetic finite-difference schemes, but does not provide a unique expression for MK . It is
worth noting that the symmetric matrix 1

|K |
RK κ−1 R⊺

K satisfies (32), but is only positive semidefinite. To enforce the
SPD structure of MK and obtain a coercive bilinear form, a stabilization term is introduced. Let CK be a matrix
of size card(FK ) × (card(FK ) − 2) whose columns form a basis of ker(N⊺

K ), and let UK be a SPD matrix of size
(card(FK ) − 2) × (card(FK ) − 2). As shown in [62], writing MK in the generic form:

MK =
1

|K |
RK κ−1 R⊺

K + γK ŨK with ŨK := CK UK C⊺
K , (33)

yields a coercive local bilinear form that still satisfies the algebraic consistency condition (32) since C⊺
K NK = 0.

In (33), it is clear that the structure of the mimetic inner product is analogous to that of the VEM operator aK
h as

both bilinear forms can be split into a term ensuring consistency and a term enforcing stability (see Remark 2).
Multiple definitions of the stabilization term in (33) have been proposed in previous work [25]. Here, we obtain an
inner product satisfying the MFD stability condition by setting the scaling coefficient as:

γK :=
1

card(FK )|K |
trace(RK κ−1

|K R⊺
K ), (34)

and by writing UK = (C⊺
K CK )−1, which yields after some simplifications [7]:

ŨK = I − NK (N⊺
K NK )−1 N⊺

K . (35)
9
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Remark 3. We note that setting:

(MK ) f f ′ =

{
| f |∥cK , f ∥

2
2

nK , f ·κ |K ·cK , f
, if f ′

= f

0 otherwise,
(36)

ields a matrix containing the inverses of the TPFA half-transmissibilities divided by | f |
2. This can be used to

ecover the cell-centered linear TPFA scheme after algebraic elimination of the face variables [63]. However, it
s well known that the linear TPFA scheme is not consistent if the mesh does not satisfy the κ-orthogonality
ondition (6).

emark 4. After static condensation, the hybrid MFD scheme has the same number of dofs and the same degree
f accuracy as other lowest-order polygonal schemes in mixed form like Mixed VEM (MVEM) [64,65], with one
ell-centered dof (pressure), and one face-centered dof (velocity for MVEM, and Lagrange multiplier for the hybrid
FD scheme). A more detailed numerical comparison of the two methods should proceed along the lines of [32].

.5. Local pressure-jump stabilization

The stability of the coupled scheme described in (15) is subject to the well-known Ladyzhenskaya–Babuška–
rezzi (LBB) inf–sup stability conditions [35,36]:

∃β > 0 : inf
ph∈Ph\{0}

sup
vh∈Uh\{0}

(α IPh ph, divVEM
h vh)L2(Ω)IPh ph


L2(Ω) ∥vh∥[L2(Ω)]2

≥ β , (37)

∃γ > 0 : inf
ph∈Ph\{0}

sup
ϕh∈Wh\{0}

[ph, divMFD
h ϕh]Ph

∥ph∥Ph

ϕh


Wh

≥ γ . (38)

hile the inf–sup condition in (38) can be proved to be true using arguments similar to [66, Theorem 2], the
roposed scheme relies on approximation spaces for the displacement and pressure variables that do not, in general,
atisfy the discrete inf–sup condition given in (37). Specifically, for incompressible solid and fluid constituents,
.e. Sε = 0, in the presence of undrained conditions – resulting for instance from small time steps and/or
ow permeability – the instability may manifest itself by the presence of spurious modes in the pressure field
checkerboarding).

It is worth noting that, for specific mesh topologies, the spurious pressure modes do not appear and no
tabilization is required. In particular, the numerical examples of Section 4.3 indicate that the Polymesher1 and
olymesher20 mesh families do not exhibit any checkerboarding. These results are in agreement with the findings
f [37,41,67], in which equal-order interpolation schemes applied to the Stokes problem are shown to be stable
henever no vertex in the mesh is connected to more than three faces.
To eliminate checkerboarding in the unstable mesh configurations – in this work, the Cartesian, Skewed,

ybrid mesh types – we rely on the local pressure-jump stabilization technique introduced originally for the
tokes problem [68,69], and more specifically, we adapt the methodology used in [38,39] to unstructured meshes.
o achieve this, we partition the mesh into non-overlapping cell aggregates referred to as macro-elements using

he algorithm presented in Appendix. We emphasize that these macro-elements are unstructured, in contrast to the
raditional concept of structured macro-elements on a logically-nested grid. Considering the set of macro-elements
, a macro-element E ∈ E is constructed such that E = ∪K∈E K and ∪E∈E E = T . We denote by FE,int the
et of mesh faces that are in the interior of E . Following [38,39], the local pressure-jump stabilization consists in
ntroducing artificial fluxes at the internal faces f ∈ FE,int of each macro-element E to prevent the development of
purious pressure modes. This is done by adding the following term in the mass balance equation (15c):

J (pn
h, χh) := β

∑
E∈E

∑
f ∈FE,int

Υ f [[pn
h]] f [[χh]] f , pn

h, χh ∈ Ph, (39)

here the pressure jump for an internal face f ∈ FE,int is [[pn
h]] f := pn

K − pn
L (K , L ∈ T f with K < L). We

ntroduce a geometric coefficient, Υ f , representing a characteristic area associated with an internal face f ∈ FE,int
nd defined as follows. Considering cell K ∈ E , we associate each node v ∈ VK with the measure, denoted by

10
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Fig. 3. Unstructured macro-element stabilization for the Hybrid mesh family: (a) mesh; (b) mesh partition into macro-elements; and (c)
example of macro-element E = K1 ∪ K2 ∪ K3 ∪ K4, made of three quadrilaterals (K1, K2, and K3) and one triangle (K4). In the stabilized
scheme, we add artificial fluxes at the four (internal) faces adjacent to vertex v1. Assuming that f is the face defined by vertices v1 and
v2, we compute Υ f := m1,1 + m1,2 + m4,1 + m4,2 in Eq. (39) as the area of the region in gray.

mK ,v , of the quadrilateral whose vertices (appropriately ordered) are v, the centers of the two faces adjacent to v

in K , and the centroid of K (see Fig. 3). Using that, we define Υ f as:

Υ f :=

∑
K∈T f

∑
v∈V f

mK ,v. (40)

The two-dimensional stabilization coefficient [39,70], denoted by β, is computed using Biot’s coefficient and the
Lamé parameters as:

β :=
α2

4(2G + λ)
. (41)

ince the artificial fluxes are only added at the internal faces of the macro-elements, the stabilized scheme is not
ell-wise mass conservative but remains mass conservative at the level of the macro-elements—in the sense that the
um of the fluxes at the external faces of a macro-element is equal to zero for the incompressible setting considered
ere. The stability properties of the scheme and their impact on the performance of the iterative linear solver are
ssessed in Section 4.3.

.6. Solution strategy

The discrete weak form (15) produces a sequence of 4 × 4 block systems of algebraic equations of the type⎡⎢⎢⎢⎣
Auu 0 −Aup 0
0 Aww −Awp −Awπ

A⊺
up ∆t A⊺

wp App 0
0 A⊺

wπ 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u
w
p
π

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
bu

bw

bp

bπ

⎤⎥⎥⎥⎦ , (42)

here

• Auu is a symmetric positive definite (SPD) matrix corresponding to the elasticity block;
• Aww is a block-diagonal SPD matrix, having as many blocks as the number of cells, each one with a size

equal to the number of faces of the corresponding cell;
• App consists of two contributions: (i) a diagonal matrix that depends cell-wise on the specific storage coefficient

Sε, and (ii) a local stabilization contribution (Eq. (39)), if needed, whose sparsity pattern is a subset of that
of a discrete (cell-centered) Laplace operator;

• Aup and Awp are matrices generated by the inner products (α IPh χn
h, divVEM

h ηh)L2(Ω) and [χn
h, divMFD

h ϕh]Ph ,

respectively;

11
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• Awπ is a matrix whose columns correspond to a unique mesh interface, having two (respectively one) negative
unit entries for interfaces belonging to Fint (respectively Fp ∪ Fq ).

Following standard practice [71], we take advantage of the block-diagonal structure of Aww by reducing (42) via
static condensation to a 3 × 3 linear system

Ax = b, A =

⎡⎢⎣Auu −Aup 0
A⊺

up App ∆t Apπ

0 A⊺
pπ Aππ

⎤⎥⎦ , x =

⎡⎢⎣u
p
π

⎤⎥⎦ , b =

⎡⎢⎣ bu

bp − ∆t A⊺
wp A−1

wwbw

bπ − A⊺
wπ A−1

wwbw

⎤⎥⎦ , (43)

with App = (App + ∆t A⊺
wp A−1

ww Awp), Apπ = (A⊺
wp A−1

ww Awπ ), and Aππ = (A⊺
wπ A−1

ww Awπ ). We note that App shares
he same sparsity pattern as App since the matrix arising from the static condensation, i.e. ∆t A⊺

wp A−1
ww Awp, is

iagonal.
The non-symmetric linear system (43) is solved by a preconditioned Krylov subspace method. It shares the

ame properties of the Biot system addressed in [39], which is obtained based on a mixed hybrid finite element
ormulation of the same three-field formulation considered in this work. Thus, we adopt the same block-triangular
reconditioning strategy, used in conjunction with a right-preconditioned generalized minimal residual (GMRES)
ethod [72]. Denoting by P−1 the preconditioning operator, we work with the modified system:

AP−1y = b, (44a)

x = P−1y. (44b)

he preconditioner in factorized form reads:

P−1
=

⎡⎢⎣ Ã−1
uu 0 0
0 I 0
0 0 I

⎤⎥⎦
⎡⎢⎣I Aup 0

0 I 0
0 0 I

⎤⎥⎦
⎡⎢⎣I 0 0

0 B̃−1
pp 0

0 0 I

⎤⎥⎦
⎡⎢⎣I 0 0

0 I −∆t Apπ

0 0 I

⎤⎥⎦
⎡⎢⎣I 0 0

0 I 0

0 0 C̃−1
ππ

⎤⎥⎦ , (45)

with Ã−1
uu a suitable approximation of A−1

uu , B̃−1
pp a suitable approximation of the inverse of the first-level SPD Schur

omplement B pp = (App + A⊺
up A−1

uu Aup), and C̃−1
ππ a suitable approximation of the inverse of the second-level SPD

chur complement Cππ = (Aππ − ∆t A⊺
pπ B−1

pp Apπ ). We define B̃−1
pp considering the following expression:

B pp ≈ App + diagm(A⊺
up D−1

uu Aup), (46)

here the so-called fixed-stress assumption [73–75] is used to introduce a sparse approximation of the triple product
A⊺

up A−1
uu Aup. In (46), diagm(·) is an operator constructing a diagonal matrix by extracting the diagonal entries of

he input matrix, and Duu = diagm(Auu). Based on (46), the action of B̃−1
pp on a vector is always expressed by a

ingle ℓ1-Jacobi iteration [76,77]. Therefore, B̃−1
pp is available explicitly and allows us to replace, for preconditioning

urposes, the exact second-level Schur complement with

Cππ ≈ Aππ − ∆t A⊺
pπ B̃−1

pp Apπ . (47)

he approximations considered for Ã−1
uu and C̃−1

ππ are provided in Section 4. For a detailed analysis of the features
f preconditioner (45) the reader is referred to [39].

In future work, to efficiently tackle large three-dimensional problems, we can formulate the block-triangular
reconditioner presented above in a MultiGrid Reduction (MGR) framework [78]. This algebraic approach allows
or rapid exploration of different solver designs, such as the order in which the unknowns are reduced, different
trategies to construct coarse grid operators, and a wide range of available smoothers. One can combine the MGR
uilding blocks developed in previous works for multiphase poromechanics [79] and hybrid MFD for flow [80]
o construct a scalable preconditioner for the MFD-VEM scheme. Progress on this topic will be reported in a
ubsequent publication.

. Numerical examples

We now consider three sets of numerical experiments. In the first set, Mandel’s problem (Fig. 4a), a classical
enchmark of linear poroelasticity for which an analytical solution is available [40], is used to validate our MFD-

EM formulation. In the second set, we numerically investigate the scheme’s convergence properties based on a
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Table 2
Parameter values used for the numerical examples.

Symbol Parameter Units Mandel’s
problem

Manufactured
solution problem

Cantilever
problem

λ Lamé’s first parameter [Pa] 2.778 × 105 1.0 1.429 × 105

G Shear modulus [Pa] 4.167 × 105 1.0 3.571 × 104

b Biot’s coefficient [–] 1.0 1.0 1.0
Sε Constrained specific storage [Pa] 0.0 0.0 0.0
κ Isotropic permeability over viscosity [m2 Pa−1 s−1] 1 × 10−15 1.0 1 × 10−7

a Domain size in x-direction [m] 1.0 1.0 1.0
b Domain size in z-direction [m] 1.0 1.0 1.0
F Applied force magnitude [N m−1] 2 × 102 – 1.0

Fig. 4. Domain sketch for Mandel’s problem (a) and the cantilevered square block (b). For Mandel’s problem, symmetry allows for modeling
only the gray region shown in (a), i.e. a quarter of the domain.

manufactured regular solution [81], solving the IBVP (1) on the unit square domain Ω = [0, 1]2. In the third set,
a cantilevered square block (Fig. 4b) is considered to demonstrate the robustness of the proposed stabilization with
respect to pressure oscillations in the incompressible limit. In particular, we emphasize its beneficial effects on the
iterative solver convergence. Details of the material and parameter values used in the three test cases are summarized
in Table 2.

In all tests, we assume the zero vector as initial guess for (non-restarted) GMRES and terminate the iterations
when the initial residual has been reduced by a factor of 106. As to the preconditioner (45), the operator Ã−1

uu is
defined based on the so-called separate displacement component part of the stiffness matrix [82,83], i.e. a sparse
approximation to Auu in which x- and y-displacement dofs are decoupled. We consider either a sparse direct
solver or algebraic multigrid (AMG) preconditioning for both Ã−1

uu and C̃−1
ππ . Specifically, we use a classic AMG

method [84] as provided by the HSL MI20 package [85] with default parameters (symmetric Gauss–Seidel smoother,
single V-cycle, and a direct coarse solver) except for the coarsening failure criterion control (c fail), which is set
to 2. An ℓ1-Jacobi [76,77] smoother is always employed for B̃−1

pp .

4.1. Mandel’s problem

Mandel’s problem [40] consists of a sample of saturated, isotropic, poroelastic material that is loaded under
plane-strain conditions by a constant compressive force of magnitude 2F applied at time t = 0 on rigid, frictionless,

impermeable plates. The sample has dimensions 2a ×2b (Fig. 4a). The left and right sides (x = ±a) are stress free,
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Fig. 5. Mandel’s problem: normalized analytical (continuous profiles) and MFD-VEM (circle markers) pressure solutions along a cross
section at y = 0.5 for a 400-cell mesh from the Cartesian (a), Skewed (b), Hybrid (c), Polymesher1 (d) and Polymesher20 (e)
families, respectively.

drained and kept at constant ambient pressure. The exact analytical solutions of this problem are known (see [86,
Appendix A.2]). Given the symmetry of the problem, we solve it on a quarter of the domain, represented by the
square Ω = (0, a) × (0, b) (Fig. 4a). The simulation setup is the same as that used in [86]. We use the unit square
as the domain, i.e. a = b = 1 m. The rigid plate constraint is accounted for by prescribing the vertical displacement
at the loaded boundaries using the closed-form solution of the problem.

In Fig. 5 we compare analytical and MFD-VEM solutions for the pressure along a cross-section at y = 0.5 at

different times. The results are relative to 400-cell meshes from the mesh families in Fig. 2. A constant time step
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Fig. 6. Test with manufactured exact solution: total error behavior for the pressure (a), displacement (b), and effective stress (c). For each
profile the convergence rates are provided in parenthesis in the legend.

size ∆t = 10−4
· Tc is used in both cases, with Tc = a2/(κ(λ + 2G)) the characteristic time of the consolidation

rocess. We can see that the computed values match the expected profile very well, with relative error values of the
rder of 10−4. Note that the parameters used are representative of the limit case of incompressible solid (b = 1.0)
nd fluid (Sε = 0) constituents, which maximizes the hydromechanical coupling, i.e. the so-called Mandel–Cryer
ffect. These results confirm the robustness of the method with respect to badly shaped elements. Because of the
ack of regularity of the pressure field for Mandel’s problem [46,87], we do not perform a mesh refinement study
o evaluate numerically the convergence rate of quantities of interest here. This is addressed in the next section.

.2. Test with exact solution

We consider the manufactured regular exact solution proposed in [81]. A body force b is introduced in (1a) such
that the exact distributions of pressure and displacement read

p(x, y, t) = − cos(π t) sin(πx) sin(πy) , u(x, y, t) = sin(π t)
(

− cos(πx) cos(πy)
sin(πx) sin(πy)

)
. (48)

The following error measures are considered:

ep =

(∫ T

0
∥p(t) − ph(t)∥2

L2(Ω)

) 1
2

, eσ ′ =

(∫ T

0

∑
K∈T

σ̃ ′

K (Ih (u(t))) − σ̃ ′

K (uh(t))
2

K

) 1
2

, (49)

eu =

(∫ T

0

∑
K∈T

ũK (t) − ũh,K (t)
2

K

) 1
2

. (50)

he above quantities are computed on the families of meshes illustrated in Fig. 2. These meshes are refined together
ith the time discretization parameter ∆t , in such a way that, if (N cells

k ,∆tk) is the pair of discretization parameters
at the kth refinement (number of cells and time discretization parameter, respectively), then (N cells

k+1 ,∆tk+1) =

4N cells
k ,∆tk/2). In Fig. 6 we display the behavior of the above quantities with respect to the maximum diameter of

he discretization h, at each refinement step, reporting the experimental convergence rates in the legend, computed
sing the last two points of each line. We can see that the rates of convergence are in very good accordance
ith the theory on the more regular meshes (Polymesher20 and Cartesian), while on less regular meshes we
15
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Fig. 7. Test with manufactured exact solution: error through space and time refinements, for the Cartesian mesh family.

Fig. 8. Test with manufactured exact solution: error through space and time refinements, for the Skewed mesh family.

Fig. 9. Test with manufactured exact solution: error through space and time refinements, for the Hybrid mesh family.

till see a preasymptotic behavior, due to the fact that h does not scale exactly as 1
√

N cells . To check the correct

onvergence rates in time, in Figs. 12 and 13 we display the behavior of ep and eu for fixed h, as functions of the
ime discretization parameter ∆t . We can see that, once the time component of the error becomes dominant, we
btain the expected rates of convergence. Finally, Figs. 7, 8, 9, 10, and 11 display the errors computed for each
hoice of ∆t and h and confirm the behaviors expected from theoretical results. Indeed, it can be checked that all
uantities are asymptotically decreasing linearly with respect to h; ep and eu decrease linearly with respect to ∆t ,

and e is asymptotically constant with respect to ∆t .
σ
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Fig. 10. Test with manufactured exact solution: error through space and time refinements, for the Polymesher1 mesh family.

Fig. 11. Test with manufactured exact solution: error through space and time refinements, for the Polymesher20 mesh family.

4.3. Cantilevered square block problem

We consider the cantilever problem discussed in [88] and later used in [39] to demonstrate the robustness and
computational efficiency of coupled schemes relying on the unstructured macro-element stabilization. A sketch
of the setup of the problem is shown in Fig. 4b. We assume the problem domain Ω to be the unit square. The
mechanical boundary conditions fix the displacement (u = 0) on the left, and impose a unit downward traction at
he top and a zero traction on the right and at the bottom. We impose no-flow boundary conditions on the four
ides. The problem parameters are identical to those used in [39] and are provided in Table 2. Sequences of refined
eshes for each family are employed for a total of 6 levels (Table 3), with a problem size ranging three orders of
agnitude in terms of global number of unknowns.
First, we focus on the effectiveness of the proposed stabilization technique in preventing the occurrence of

scillations in the discrete pressure field. A contour plot of the pressure MFD-VEM solution on the level 0
esh of each family after a single timestep ∆t = 1 × 10−5 s is given in Fig. 14. The use of an unstabilized

formulation produces checkerboard oscillations for the Cartesian, Skewed, and Hybrid meshes, which are evident
in the bottom panels (Fig. 14f, g, h). Such oscillations are successfully removed by the pressure-jump stabilization
(Fig. 14a, b, c). As expected, stable results are obtained with meshes Polymesher1 and Polymesher20 without
stabilization (Fig. 14d, e) since all the vertices are connected to at most three faces [37]. Conversely, for larger
timestep sizes the MFD-VEM formulation becomes intrinsically stable with no stabilization required (Fig. 15).

Finally, the algorithmic weak scalability of the iterative linear solver strategy described in Section 3.6 is
numerically investigated. We solve (43) only once for two different timestep sizes. Figs. 16–17 display the number
of GMRES iterations needed in the sequence of refined problems detailed in Table 3 When nested direct solvers

−̃1 ˜−1
are used to approximate the action of Auu and Cππ (Fig. 16), two behaviors may be observed in case of a small
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t
(

Fig. 12. Test with manufactured exact solution: pressure error behavior through space refinements.

imestep relative to the characteristic consolidation time, ∆t = 1 × 10−5 s. For a stable formulation – stabilized
Cartesian(⋆), Skewed(⋆), Hybrid(⋆)) or intrinsically stable (Polymesher1, Polymesher20) – the preconditioner

P−1 performs very well, with only a modest increase in the iteration count between levels 0 and 5. We also note
that the presence of non-convex cells in the Skewed meshes (see Table 1) does not significantly deteriorate the
performance of the preconditioner in the stabilized case. Such almost-optimal behavior of P−1 with respect to
mesh size for all mesh families is lost in case of an unstable formulation. Indeed, GMRES shows erratic iteration
counts that reflect the sensitivity of Krylov-based solvers to the presence of near-singular pressure modes. For larger
timestep size, i.e. ∆t = 1 × 10−1 s, the system is far from the incompressibility limit (Fig. 17). Hence, the linear

solver always exhibits robust convergence and the stabilization effects become irrelevant. Replacing nested direct

18
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Fig. 13. Test with manufactured exact solution: displacement error behavior through space refinements.

solvers by AMG preconditioning for Ã−1
uu and C̃−1

ππ preserves the desired behavior at a substantially smaller cost.
For ∆t = 1 × 10−1 s, the presence of distorted cells in the Skewed mesh family leads to a slight increase in the
number of linear iterations when AMG is used (see Fig. 17). This behavior of AMG is often observed on highly

skewed meshes and can typically be attenuated with more sophisticated AMG techniques.
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Table 3
Cantilevered square block: grid refinement and problem size.

(a) Cartesian and Skewed. (b) Hybrid.

Level |V| |T | |F | Number of unknowns Level |V| |T | |F | Number of unknowns

0 121 100 220 562 0 118 110 227 573
1 441 400 840 2,122 1 382 391 772 1,927
2 1,681 1,600 3,280 8,242 2 1,500 1,608 3,107 7,715
3 6,561 6,400 12,960 32,482 3 5,847 6,399 12,245 30,338
4 25,921 25,600 51,520 128,962 4 22,983 25,543 48,525 120,034
5 103,041 102,400 205,440 513,922 5 91,883 102,396 194,278 480,440

(c) Polymesher1. (d) Polymesher20.

Level |V| |T | |F | Number of unknowns Level |V| |T | |F | Number of unknowns

0 202 100 301 805 0 202 100 301 805
1 802 400 1,201 3,205 1 802 400 1,201 3,205
2 3,201 1,600 4,800 12,802 2 3,202 1,600 4,801 12,805
3 12,802 6,400 19,201 51,205 3 12,802 6,400 19,201 51,205
4 51,194 25,600 76,793 204,781 4 51,200 25,600 76,799 204,799
5 204,732 102,400 307,131 818,995 5 204,783 102,400 307,182 819,148

Fig. 14. Cantilevered square block problem: pressure solution after a single time step ∆t = 1 × 10−5 s for level 0 mesh of each family
(see Table 3). In panels a, b, and c, the star symbol (⋆) superscript indicates that the local pressure-jump stabilization was introduced, with
he unstructured macro-element mesh highlighted using thicker edges. The remaining panels (d to h) were obtained with the unstabilized
ormulation.

. Closure

In this work, we have presented a numerical scheme coupling hybrid MFD and VEM to discretize Biot’s
quations of poroelasticity on arbitrary polygonal meshes. A key feature of the discretization is that it remains
onvergent in the presence of highly distorted cells with arbitrary shapes, as demonstrated numerically in Section 4.
or incompressible problems approaching undrained conditions, the discretization is stabilized with a local
ressure-jump technique applicable to unstructured meshes to prevent the development of spurious pressure modes
checkerboarding). The proposed simulation framework also includes a fully coupled linear solution strategy, based

n a block-triangular preconditioner, with excellent scalability.
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Fig. 15. Cantilevered square block: same as Fig. 15 for ∆t = 1 × 10−1 s.

Fig. 16. Cantilevered square block: right-preconditioned GMRES iteration number to solve system (43) at the first timestep with ∆t = 1×10−5

s using either nested direct solvers (DIRECT) or algebraic multigrid (AMG) to apply both Ã−1
uu and C̃−1

ππ . In the legend, the star symbol (⋆)
superscript indicates that the local pressure-jump stabilization was introduced.

Fig. 17. Cantilevered square block: same as Fig. 16 for ∆t = 1 × 10−1 s.
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Algorithm 1 Unstructured macro-element construction algorithm

1: Mark all vertices as not visited yet.
2: for v in Vint do
3: if v is marked not visited yet then
4: Form a macro-element with the cells adjacent to v.
5: Mark all the vertices of the cells forming the new macro-element as visited.
6: end if
7: end for
8: Collect cells not yet assigned to a macro-element in list C.
9: while C is not empty do

10: Pick cell K at the top of list C.
11: if K is adjacent (through faces) to at least one macro-element then
12: Assign K to the neighboring macro-element with the smallest number of cells.
13: Remove K from list C.
14: else
15: Put K at the back of list C.
16: end if
17: end while

Future work will focus on the extension of these results to three-dimensional polyhedral meshes to further
emonstrate the potential of the numerical framework and confirm scalability in large-scale problems. A key goal is
o address both fully unstructured meshes and stratigraphic corner-point grids [25]. The latter remain the industry-
tandard approach in reservoir engineering studies, but contain deformed (and sometimes degenerate) hexahedral
ells with non-matching faces that cannot be handled by the standard FEM. In this context, we will exploit the
obustness of the scheme with respect to mesh degeneracies and badly shaped elements. We can also benefit from
ecent studies on MFD and VEM with curved edges or faces [64,89,90]. The extension of the proposed approach will
ose multiple challenges also related to the design of a scalable preconditioner. The block-preconditioner outlined
n Section 3.6 will be formulated in the MultiGrid Reduction framework [78–80]. Several key questions will have
o be addressed, including the order in which the unknowns are reduced, the construction of the MGR coarse grid
perators, and the choice of optimal smoothers (with their tuning parameters) for each subproblem [91].
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ppendix. Unstructured macro-element construction for local pressure-jump stabilization

Here, we review the partitioning of the mesh involved in the local pressure-jump stabilization. This is done using
he mesh connectivity in two steps described in Algorithm 1. We obtain non-overlapping macro-elements containing

t least three cells.
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To initialize the algorithm, we mark all the vertices as not visited yet. In the first step, we loop over the internal
ertices of the mesh. If a vertex is marked as visited, it is skipped and we proceed to the next vertex in the list. If
ot, we form a macro-element made of the cells adjacent to this vertex, and we mark this vertex as visited, as well
s all the vertices of the cells forming the macro-element. At the end of this first step, some cells are, in general,
till unassigned to a macro-element.

In the second step, we collect these unassigned cells in a list, and for each cell in the list, we proceed as
ollows. If an unassigned cell is adjacent (through faces) to at least one macro-element, this cell is assigned to its
eighboring macro-element with the smallest number of cells, and is then removed from the list. If an unassigned
ell is surrounded by unassigned cells, it is placed at the back of the list, and will be processed later. This procedure
s applied until the list is empty, at which point all cells are assigned to a macro-element.
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