484 research outputs found

    A truthful online mechanism for resource allocation in fog computing

    Get PDF
    Fog computing is a promising Internet of Things (IoT) paradigm in which data is processed near its source. Here, efficient resource allocation mechanisms are needed to assign limited fog resources to competing IoT tasks. To this end, we consider two challenges: (1) near-optimal resource allocation in a fog computing system; (2) incentivising self-interested fog users to report their tasks truthfully. To address these challenges, we develop a truthful online resource allocation mechanism called flexible online greedy. The key idea is that the mechanism only commits a certain amount of computational resources to a task when it arrives. However, when and where to allocate resources stays flexible until the completion of the task. We compare our mechanism to four benchmarks and show that it outperforms all of them in terms of social welfare by up to 10% and achieves a social welfare of about 90% of the offline optimal upper bound

    POEM: Pricing Longer for Edge Computing in the Device Cloud

    Full text link
    Multiple access mobile edge computing has been proposed as a promising technology to bring computation services close to end users, by making good use of edge cloud servers. In mobile device clouds (MDC), idle end devices may act as edge servers to offer computation services for busy end devices. Most existing auction based incentive mechanisms in MDC focus on only one round auction without considering the time correlation. Moreover, although existing single round auctions can also be used for multiple times, users should trade with higher bids to get more resources in the cascading rounds of auctions, then their budgets will run out too early to participate in the next auction, leading to auction failures and the whole benefit may suffer. In this paper, we formulate the computation offloading problem as a social welfare optimization problem with given budgets of mobile devices, and consider pricing longer of mobile devices. This problem is a multiple-choice multi-dimensional 0-1 knapsack problem, which is a NP-hard problem. We propose an auction framework named MAFL for long-term benefits that runs a single round resource auction in each round. Extensive simulation results show that the proposed auction mechanism outperforms the single round by about 55.6% on the revenue on average and MAFL outperforms existing double auction by about 68.6% in terms of the revenue.Comment: 8 pages, 1 figure, Accepted by the 18th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models

    Multiattribute-Based Double Auction Toward Resource Allocation in Vehicular Fog Computing

    Get PDF
    Vehicular fog computing (VFC) could provide fast task processing services for vehicles. To make vehicles/fog nodes willing to buy/sell resources, a double auction mechanism considering the interests of all parties is needed. However, few works study the auction issue in VFC. Different from the existing edge-related auction which only considers the price, some nonprice attributes (location, reputation, and computing power) are also important for providing fair resource allocation in VFC. In this article, we propose a multiattribute-based double auction mechanism in VFC, which considers both the price and nonprice attributes for constructing reasonable matching. To the best of our knowledge, this is the first work to consider multiattribute-based auction in VFC. Our auction mechanism could satisfy computational efficiency, individual rationality, budget balance, and truthfulness. To verify the proposed mechanism, we simulate VFC using VISSIM and extract the driving data. The experimental results show the effectiveness and efficiency of this mechanism
    • …
    corecore