12,441 research outputs found

    Automated Home Oxygen Delivery for Patients with COPD and Respiratory Failure: A New Approach

    Get PDF
    Long-term oxygen therapy (LTOT) has become standard care for the treatment of patients with chronic obstructive pulmonary disease (COPD) and other severe hypoxemic lung diseases. The use of new portable O-2 concentrators (POC) in LTOT is being expanded. However, the issue of oxygen titration is not always properly addressed, since POCs rely on proper use by patients. The robustness of algorithms and the limited reliability of current oximetry sensors are hindering the effectiveness of new approaches to closed-loop POCs based on the feedback of blood oxygen saturation. In this study, a novel intelligent portable oxygen concentrator (iPOC) is described. The presented iPOC is capable of adjusting the O-2 flow automatically by real-time classifying the intensity of a patient's physical activity (PA). It was designed with a group of patients with COPD and stable chronic respiratory failure. The technical pilot test showed a weighted accuracy of 91.1% in updating the O-2 flow automatically according to medical prescriptions, and a general improvement in oxygenation compared to conventional POCs. In addition, the usability achieved was high, which indicated a significant degree of user satisfaction. This iPOC may have important benefits, including improved oxygenation, increased compliance with therapy recommendations, and the promotion of PA

    Violence Reduction

    Get PDF
    The 1990s have seen a significant decline in the occurrence of violent crimes nationwide, especially in major metropolitan areas. Yet, the number of person-on-person crimes in which youth appear as either offenders or victims remains persistently high in Philadelphia. The homicide rate among young Philadelphians is five times higher than that for the U.S. population. Public, private and nonprofit organizations in Philadelphia are working together to set in motion a unique and promising partnership aimed at significantly reducing youth violence: Philadelphia's Youth Violence Reduction Project (YVRP). This report summarizes the acute need for public and private violence reduction partnerships, describes outstanding current efforts by city agencies and youth-serving organizations to help curb youth violence in Philadelphia and outlines the evolution of the YVRP project, its pilot program in the 24th Police District, and the larger potential it has for Philadelphia

    Hierarchical Quantized Representations for Script Generation

    Full text link
    Scripts define knowledge about how everyday scenarios (such as going to a restaurant) are expected to unfold. One of the challenges to learning scripts is the hierarchical nature of the knowledge. For example, a suspect arrested might plead innocent or guilty, and a very different track of events is then expected to happen. To capture this type of information, we propose an autoencoder model with a latent space defined by a hierarchy of categorical variables. We utilize a recently proposed vector quantization based approach, which allows continuous embeddings to be associated with each latent variable value. This permits the decoder to softly decide what portions of the latent hierarchy to condition on by attending over the value embeddings for a given setting. Our model effectively encodes and generates scripts, outperforming a recent language modeling-based method on several standard tasks, and allowing the autoencoder model to achieve substantially lower perplexity scores compared to the previous language modeling-based method.Comment: EMNLP 201

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    FEMwiki: crowdsourcing semantic taxonomy and wiki input to domain experts while keeping editorial control: Mission Possible!

    Get PDF
    Highly specialized professional communities of practice (CoP) inevitably need to operate across geographically dispersed area - members frequently need to interact and share professional content. Crowdsourcing using wiki platforms provides a novel way for a professional community to share ideas and collaborate on content creation, curation, maintenance and sharing. This is the aim of the Field Epidemiological Manual wiki (FEMwiki) project enabling online collaborative content sharing and interaction for field epidemiologists around a growing training wiki resource. However, while user contributions are the driving force for content creation, any medical information resource needs to keep editorial control and quality assurance. This requirement is typically in conflict with community-driven Web 2.0 content creation. However, to maximize the opportunities for the network of epidemiologists actively editing the wiki content while keeping quality and editorial control, a novel structure was developed to encourage crowdsourcing – a support for dual versioning for each wiki page enabling maintenance of expertreviewed pages in parallel with user-updated versions, and a clear navigation between the related versions. Secondly, the training wiki content needs to be organized in a semantically-enhanced taxonomical navigation structure enabling domain experts to find information on a growing site easily. This also provides an ideal opportunity for crowdsourcing. We developed a user-editable collaborative interface crowdsourcing the taxonomy live maintenance to the community of field epidemiologists by embedding the taxonomy in a training wiki platform and generating the semantic navigation hierarchy on the fly. Launched in 2010, FEMwiki is a real world service supporting field epidemiologists in Europe and worldwide. The crowdsourcing success was evaluated by assessing the number and type of changes made by the professional network of epidemiologists over several months and demonstrated that crowdsourcing encourages user to edit existing and create new content and also leads to expansion of the domain taxonomy

    Fault Diagnosis of a Wind Turbine Simulated Model via Neural Networks

    Get PDF
    The fault diagnosis of wind turbine systems has been proven to be a challenging task and motivates the research activities carried out through this work. Therefore, this paper deals with the fault diagnosis of wind turbines, and it proposes viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator involves a data-driven approach, as it represents an effective tool for coping with a poor analytical knowledge of the system dynamics, together with noise and disturbances. In particular, the data-driven proposed solution relies on neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen network architecture belongs to the nonlinear autoregressive with exogenous input topology, as it can represent a dynamic evolution of the system along time. The developed fault diagnosis scheme is tested by means of a high-fidelity benchmark model, that simulates the normal and the faulty behaviour of a wind turbine. The achieved performances are compared with those of other control strategies, coming from the related literature. Moreover, a Monte Carlo analysis validates the robustness of the proposed solutions against the typical parameter uncertainties and disturbances

    Fault Diagnosis of a Wind Turbine Simulated Model via Neural Networks

    Get PDF
    The fault diagnosis of wind turbine systems has been proven to be a challenging task and motivates the research activities carried out through this work. Therefore, this paper deals with the fault diagnosis of wind turbines, and it proposes viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator involves a data-driven approach, as it represents an effective tool for coping with a poor analytical knowledge of the system dynamics, together with noise and disturbances. In particular, the data-driven proposed solution relies on neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen network architecture belongs to the nonlinear autoregressive with exogenous input topology, as it can represent a dynamic evolution of the system along time. The developed fault diagnosis scheme is tested by means of a high-fidelity benchmark model, that simulates the normal and the faulty behaviour of a wind turbine. The achieved performances are compared with those of other control strategies, coming from the related literature. Moreover, a Monte Carlo analysis validates the robustness of the proposed solutions against the typical parameter uncertainties and disturbances

    Mechanization in Industry

    Get PDF
    corecore