80 research outputs found

    Reasoning about Explanations for Negative Query Answers in DL-Lite

    Full text link
    In order to meet usability requirements, most logic-based applications provide explanation facilities for reasoning services. This holds also for Description Logics, where research has focused on the explanation of both TBox reasoning and, more recently, query answering. Besides explaining the presence of a tuple in a query answer, it is important to explain also why a given tuple is missing. We address the latter problem for instance and conjunctive query answering over DL-Lite ontologies by adopting abductive reasoning; that is, we look for additions to the ABox that force a given tuple to be in the result. As reasoning tasks we consider existence and recognition of an explanation, and relevance and necessity of a given assertion for an explanation. We characterize the computational complexity of these problems for arbitrary, subset minimal, and cardinality minimal explanations

    Get my pizza right: Repairing missing is-a relations in ALC ontologies (extended version)

    Full text link
    With the increased use of ontologies in semantically-enabled applications, the issue of debugging defects in ontologies has become increasingly important. These defects can lead to wrong or incomplete results for the applications. Debugging consists of the phases of detection and repairing. In this paper we focus on the repairing phase of a particular kind of defects, i.e. the missing relations in the is-a hierarchy. Previous work has dealt with the case of taxonomies. In this work we extend the scope to deal with ALC ontologies that can be represented using acyclic terminologies. We present algorithms and discuss a system

    Abduction in {EL} via Translation to {FOL}

    Get PDF
    International audienceWe present a technique for performing TBox abduction in the description logic EL. The input problem is converted into first-order formulas on which a prime implicate generation technique is applied, then EL hypotheses are reconstructed by combining the generated positive and negative implicates

    Connection-Minimal Abduction in EL\mathcal{EL} via Translation to {FOL}

    Get PDF
    International audienceAbduction in description logics finds extensions of a knowledge base to make it entail an observation. As such, it can be used to explain why the observation does not follow, to repair incomplete knowledge bases, and to provide possible explanations for unexpected observations. We consider TBox abduction in the lightweight description logic EL , where the observation is a concept inclusion and the background knowledge is a TBox, i.e., a set of concept inclusions. To avoid useless answers, such problems usually come with further restrictions on the solution space and/or minimality criteria that help sort the chaff from the grain. We argue that existing minimality notions are insufficient, and introduce connection minimality. This criterion follows Occam’s razor by rejecting hypotheses that use concept inclusions unrelated to the problem at hand. We show how to compute a special class of connection-minimal hypotheses in a sound and complete way. Our technique is based on a translation to first-order logic, and constructs hypotheses based on prime implicates. We evaluate a prototype implementation of our approach on ontologies from the medical domain

    Heuristic Ranking in Tightly Coupled Probabilistic Description Logics

    Full text link
    The Semantic Web effort has steadily been gaining traction in the recent years. In particular,Web search companies are recently realizing that their products need to evolve towards having richer semantic search capabilities. Description logics (DLs) have been adopted as the formal underpinnings for Semantic Web languages used in describing ontologies. Reasoning under uncertainty has recently taken a leading role in this arena, given the nature of data found on theWeb. In this paper, we present a probabilistic extension of the DL EL++ (which underlies the OWL2 EL profile) using Markov logic networks (MLNs) as probabilistic semantics. This extension is tightly coupled, meaning that probabilistic annotations in formulas can refer to objects in the ontology. We show that, even though the tightly coupled nature of our language means that many basic operations are data-intractable, we can leverage a sublanguage of MLNs that allows to rank the atomic consequences of an ontology relative to their probability values (called ranking queries) even when these values are not fully computed. We present an anytime algorithm to answer ranking queries, and provide an upper bound on the error that it incurs, as well as a criterion to decide when results are guaranteed to be correct.Comment: Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI2012

    Abduction inELvia Translation to FOL

    Get PDF
    International audienceWe present a technique for performing TBox abduction in the description logic EL. The input problem is converted into first-order formulas on which a prime implicate generation technique is applied, then EL hypotheses are reconstructed by combining the generated positive and negative implicates

    Explaining Query Answers under Inconsistency-Tolerant Semantics over Description Logic Knowledge Bases (Extended Abstract)

    Get PDF
    The problem of querying description logic (DL) knowledge bases (KBs) using database-style queries (in particular, conjunctive queries) has been a major focus of recent DL research. Since scalability is a key concern, much of the work has focused on lightweight DLs for which query answering can be performed in polynomial time w.r.t. the size of the ABox. The DL-Lite family of lightweight DLs [10] is especially popular due to the fact that query answering can be reduced, via query rewriting, to the problem of standard database query evaluation. Since the TBox is usually developed by experts and subject to extensive debugging, it is often reasonable to assume that its contents are correct. By contrast, the ABox is typically substantially larger and subject to frequent modifications, making errors almost inevitable. As such errors may render the KB inconsistent, several inconsistency-tolerant semantics have been introduced in order to provide meaningful answers to queries posed over inconsistent KBs. Arguably the most well-known is the AR semantics [17], inspired by work on consistent query answering in databases (cf. [4] for a survey). Query answering under AR semantics amounts to considering those answers (w.r.t. standard semantics) that can be obtained from every repair, the latter being defined as an inclusion-maximal subset of the ABox that is consistent with the TBox. A more cautious semantics, called IAR semantics The need to equip reasoning systems with explanation services is widely acknowledged by the DL community. Indeed, there have been numerous works on axiom pinpointing, in which the objective is to identify (minimal) subsets of a KB that entail a given TBox axiom (or ABox assertion
    • …
    corecore