2 research outputs found

    Mobile Robot Self-Localization without Explicit Landmarks

    Full text link

    Modelado, detecci贸n de colisiones y planificaci贸n de movimientos en sistemas robotizados mediante vol煤menes esf茅ricos

    Full text link
    [EN] The efficiency of free-collision motion planning results very sensible on robot and obstacle modelling technique selected. In this way, many works have been oriented to define models with proper throughput to speed up the collision detection proccess. This dissertation presents a new approach to the problem, whose complexity is reduced notably by means of using enveloping models of real objects, allowing security regions or distances. This objective is reached by means of the definition of a spherical model, composed of infinite spheres, generated from the application of linear or polynomial equations to a reduced number of control spheres, giving the so-called poly-spheres and spheroids respectively. These models, with evident simplicity, present a high modelling power, adapt easily to the requirements need in collision-detection and path planning applications for robotics systems. In order to represent a complete multi-robot cell, an extended hierarchical structure has been defined, in form of an AND-OR graph, with different degrees of accuracy, according to the different approximation model used. In order to generate automatically this structure, a procedure has been developed to compute the minimum volume enveloping spherical model in an off-line process with two levels based on Downhill Simplex method and Hough transform. This procedure can be greatly speed up by using clustering techniques to obtain appropiate initial conditions, allowing an on-line use. With a hierarchical structure computed in such a way, a fast procedure for collision detection in a multi-robot cell is introduced, based on several algorithms for distance computation including polyspheres and spheroids. This methodology presents a fast and anticipativa response, in the sense that every movement of a system has been validated before its execution, implying that not necessarily must be done in an off-line simulation. The use of spherical models, in addition to their fast distance computation, results suitable for the definition of artificial potential fields allowing a path planning in robotics systems with up to six degrees of freedom, including three for translation and three for rotation. The definition of these new potential fields and the study of new planning techniques based on classical optimisation methods allow their application straight forward in Cartesian space, with all their advantages. Last but not least, with the help of some systems for robot programming, simulation and control, the correctness of these contributions have been validated in a set of prototype applications, covering from robot-obstacle and multi-robot collision detection, to motion planning for a robot-arm or an auto-guided vehicle.[ES] La eficiencia de la planificaci贸n de movimientos libres de colisi贸n resulta muy sensible al modelado de los robots y obst谩culos que se consideren, por lo que, frente al modelado tradicional con politopos, muchos trabajos en rob贸tica han estado orientados a la definici贸n de unos modelos que presenten buenas prestaciones de cara a acelerar el proceso de detecci贸n de colisiones. En esta Tesis se presenta una nueva perspectiva del problema, cuya complejidad queda reducida notablemente al utilizar envolventes de los objetos reales, lo que permite definir zonas o distancias de seguridad. Para ello se han definido unos modelos esf茅ricos, compuestos de infinitas esferas generadas a partir de la aplicaci贸n de unas relaciones lineales o polin贸micas a un n煤mero reducido de esferas de control, dando lugar a las llamadas poli-esferas y esferoides respectivamente. Estos modelos, de sencillez clara, presentan una potencia de modelado elevada, adapt谩ndose f谩cilmente a los requisitos necesarios en las aplicaciones de detecci贸n de colisiones y planificaci贸n de movimientos en sistemas robotizados. Para la representaci贸n de una c茅lula multi-robot completa, se ha definido una estructura jer谩rquica extendida, en forma de grafo AND-OR, con diferentes grados de precisi贸n, mediante diferentes modelos de aproximaci贸n. De cara a generar autom谩ticamente esta estructura, se ha desarrollado un procedimiento para generar el modelo esf茅rico envolvente de m铆nimo volumen en un proceso off-line con dos niveles, basados en el m茅todo de minimizaci贸n Downhill Simplex y en la transformada de Hough. Este procedimiento se acelera enormemente al utilizar t茅cnicas de agrupamiento para obtener condiciones iniciales apropiadas, permitiendo su uso on-line. Con una estructura jer谩rquica generada de esta forma, se introduce un procedimiento r谩pido de detecci贸n de colisiones aplicable a una c茅lula multi-robot, basado en algoritmos b谩sicos de c谩lculo de distancias que pueden considerar poli-esferas y esferoides. Esta metodolog铆a presenta una respuesta r谩pida y anticipativa, entendiendo por tal que todo movimiento de cualquier sistema ha sido validado antes de su ejecuci贸n, por lo que no necesariamente debe realizarse en una simulaci贸n off-line. La utilizaci贸n de modelos esf茅ricos, as铆 como el r谩pido c谩lculo de distancias entre ellos, resulta id贸nea para la definici贸n de campos potenciales artificiales que permitan una planificaci贸n de movimientos en sistemas robotizados con hasta seis grados de libertad, incluyendo tres de traslaci贸n y tres de rotaci贸n. La definici贸n de estos nuevos campos potenciales y el estudio de nuevas t茅cnicas de planificaci贸n basados en m茅todos cl谩sicos de optimizaci贸n permiten su aplicaci贸n directamente en el espacio cartesiano, con las claras ventajas que esto conlleva. Finalmente, con la ayuda de varios sistemas de programaci贸n, simulaci贸n y control de robots, se ha demostrado la validez de estas aportaciones en una serie de aplicaciones prototipo que van desde la detecci贸n de colisiones de un robot con un obst谩culo o entre sistemas multi-robot, a la planificaci贸n de movimientos de un brazo-robot o un veh铆culo autoguiado.Mellado Arteche, M. (1996). Modelado, detecci贸n de colisiones y planificaci贸n de movimientos en sistemas robotizados mediante vol煤menes esf茅ricos [Tesis doctoral no publicada]. Universitat Polit猫cnica de Val猫ncia. https://doi.org/10.4995/Thesis/10251/5662
    corecore