89,063 research outputs found

    Towards Automatic Learning of Heuristics for Mechanical Transformations of Procedural Code

    Get PDF
    The current trend in next-generation exascale systems goes towards integrating a wide range of specialized (co-)processors into traditional supercomputers. However, the integration of different specialized devices increases the degree of heterogeneity and the complexity in programming such type of systems. Due to the efficiency of heterogeneous systems in terms of Watt and FLOPS per surface unit, opening the access of heterogeneous platforms to a wider range of users is an important problem to be tackled. In order to bridge the gap between heterogeneous systems and programmers, in this paper we propose a machine learning-based approach to learn heuristics for defining transformation strategies of a program transformation system. Our approach proposes a novel combination of reinforcement learning and classification methods to efficiently tackle the problems inherent to this type of systems. Preliminary results demonstrate the suitability of the approach for easing the programmability of heterogeneous systems.Comment: Part of the Program Transformation for Programmability in Heterogeneous Architectures (PROHA) workshop, Barcelona, Spain, 12th March 2016, 9 pages, LaTe

    Transferable knowledge for Low-cost Decision Making in Cloud Environments

    Get PDF
    Users of Infrastructure as a Service (IaaS) are increasingly overwhelmed with the wide range of providers and services offered by each provider. As such, many users select services based on description alone. An emerging alternative is to use a decision support system (DSS), which typically relies on gaining insights from observational data in order to assist a customer in making decisions regarding optimal deployment of cloud applications. The primary activity of such systems is the generation of a prediction model (e.g. using machine learning), which requires a significantly large amount of training data. However, considering the varying architectures of applications, cloud providers, and cloud offerings, this activity is not sustainable as it incurs additional time and cost to collect data to train the models. We overcome this through developing a Transfer Learning (TL) approach where knowledge (in the form of a prediction model and associated data set) gained from running an application on a particular IaaS is transferred in order to substantially reduce the overhead of building new models for the performance of new applications and/or cloud infrastructures. In this paper, we present our approach and evaluate it through extensive experimentation involving three real world applications over two major public cloud providers, namely Amazon and Google. Our evaluation shows that our novel two-mode TL scheme increases overall efficiency with a factor of 60% reduction in the time and cost of generating a new prediction model. We test this under a number of cross-application and cross-cloud scenario

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition
    • …
    corecore