7,216 research outputs found

    Optimal Gossip Algorithms for Exact and Approximate Quantile Computations

    Full text link
    This paper gives drastically faster gossip algorithms to compute exact and approximate quantiles. Gossip algorithms, which allow each node to contact a uniformly random other node in each round, have been intensely studied and been adopted in many applications due to their fast convergence and their robustness to failures. Kempe et al. [FOCS'03] gave gossip algorithms to compute important aggregate statistics if every node is given a value. In particular, they gave a beautiful O(logn+log1ϵ)O(\log n + \log \frac{1}{\epsilon}) round algorithm to ϵ\epsilon-approximate the sum of all values and an O(log2n)O(\log^2 n) round algorithm to compute the exact ϕ\phi-quantile, i.e., the the ϕn\lceil \phi n \rceil smallest value. We give an quadratically faster and in fact optimal gossip algorithm for the exact ϕ\phi-quantile problem which runs in O(logn)O(\log n) rounds. We furthermore show that one can achieve an exponential speedup if one allows for an ϵ\epsilon-approximation. We give an O(loglogn+log1ϵ)O(\log \log n + \log \frac{1}{\epsilon}) round gossip algorithm which computes a value of rank between ϕn\phi n and (ϕ+ϵ)n(\phi+\epsilon)n at every node.% for any 0ϕ10 \leq \phi \leq 1 and 0<ϵ<10 < \epsilon < 1. Our algorithms are extremely simple and very robust - they can be operated with the same running times even if every transmission fails with a, potentially different, constant probability. We also give a matching Ω(loglogn+log1ϵ)\Omega(\log \log n + \log \frac{1}{\epsilon}) lower bound which shows that our algorithm is optimal for all values of ϵ\epsilon

    Computation-Aware Data Aggregation

    Get PDF
    Data aggregation is a fundamental primitive in distributed computing wherein a network computes a function of every nodes\u27 input. However, while compute time is non-negligible in modern systems, standard models of distributed computing do not take compute time into account. Rather, most distributed models of computation only explicitly consider communication time. In this paper, we introduce a model of distributed computation that considers both computation and communication so as to give a theoretical treatment of data aggregation. We study both the structure of and how to compute the fastest data aggregation schedule in this model. As our first result, we give a polynomial-time algorithm that computes the optimal schedule when the input network is a complete graph. Moreover, since one may want to aggregate data over a pre-existing network, we also study data aggregation scheduling on arbitrary graphs. We demonstrate that this problem on arbitrary graphs is hard to approximate within a multiplicative 1.5 factor. Finally, we give an O(log n ? log(OPT/t_m))-approximation algorithm for this problem on arbitrary graphs, where n is the number of nodes and OPT is the length of the optimal schedule

    A Survey of Access Control Models in Wireless Sensor Networks

    Get PDF
    Copyright 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/)Wireless sensor networks (WSNs) have attracted considerable interest in the research community, because of their wide range of applications. However, due to the distributed nature of WSNs and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. Resource constraints in sensor nodes mean that security mechanisms with a large overhead of computation and communication are impractical to use in WSNs; security in sensor networks is, therefore, a challenge. Access control is a critical security service that offers the appropriate access privileges to legitimate users and prevents illegitimate users from unauthorized access. However, access control has not received much attention in the context of WSNs. This paper provides an overview of security threats and attacks, outlines the security requirements and presents a state-of-the-art survey on access control models, including a comparison and evaluation based on their characteristics in WSNs. Potential challenging issues for access control schemes in WSNs are also discussed.Peer reviewe

    Separation of Circulating Tokens

    Full text link
    Self-stabilizing distributed control is often modeled by token abstractions. A system with a single token may implement mutual exclusion; a system with multiple tokens may ensure that immediate neighbors do not simultaneously enjoy a privilege. For a cyber-physical system, tokens may represent physical objects whose movement is controlled. The problem studied in this paper is to ensure that a synchronous system with m circulating tokens has at least d distance between tokens. This problem is first considered in a ring where d is given whilst m and the ring size n are unknown. The protocol solving this problem can be uniform, with all processes running the same program, or it can be non-uniform, with some processes acting only as token relays. The protocol for this first problem is simple, and can be expressed with Petri net formalism. A second problem is to maximize d when m is given, and n is unknown. For the second problem, the paper presents a non-uniform protocol with a single corrective process.Comment: 22 pages, 7 figures, epsf and pstricks in LaTe

    Analyzing Energy-efficiency and Route-selection of Multi-level Hierarchal Routing Protocols in WSNs

    Full text link
    The advent and development in the field of Wireless Sensor Networks (WSNs) in recent years has seen the growth of extremely small and low-cost sensors that possess sensing, signal processing and wireless communication capabilities. These sensors can be expended at a much lower cost and are capable of detecting conditions such as temperature, sound, security or any other system. A good protocol design should be able to scale well both in energy heterogeneous and homogeneous environment, meet the demands of different application scenarios and guarantee reliability. On this basis, we have compared six different protocols of different scenarios which are presenting their own schemes of energy minimizing, clustering and route selection in order to have more effective communication. This research is motivated to have an insight that which of the under consideration protocols suit well in which application and can be a guide-line for the design of a more robust and efficient protocol. MATLAB simulations are performed to analyze and compare the performance of LEACH, multi-level hierarchal LEACH and multihop LEACH.Comment: NGWMN with 7th IEEE Inter- national Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201
    corecore